黑龍江省哈爾濱第九中學2023年數學高二上期末學業(yè)質量監(jiān)測試題含解析_第1頁
黑龍江省哈爾濱第九中學2023年數學高二上期末學業(yè)質量監(jiān)測試題含解析_第2頁
黑龍江省哈爾濱第九中學2023年數學高二上期末學業(yè)質量監(jiān)測試題含解析_第3頁
黑龍江省哈爾濱第九中學2023年數學高二上期末學業(yè)質量監(jiān)測試題含解析_第4頁
黑龍江省哈爾濱第九中學2023年數學高二上期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省哈爾濱第九中學2023年數學高二上期末學業(yè)質量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.攢(cuán)尖是我國古代建筑中屋頂的一種結構樣式,多見于亭閣或園林式建筑.下圖是一頂圓形攢尖,其屋頂可近似看作一個圓錐,其軸截面(過圓錐軸的截面)是底邊長為,頂角為的等腰三角形,則該屋頂的面積約為()A. B.C. D.2.已知等比數列滿足,,則()A. B.C. D.3.已知橢圓的左、右焦點分別為,為軸上一點,為正三角形,若,的中點恰好在橢圓上,則橢圓的離心率是()A. B.C. D.4.若等軸雙曲線C過點,則雙曲線C的頂點到其漸近線的距離為()A.1 B.C. D.25.阿基米德不僅是著名的物理學家,也是著名的數學家,他利用“逼近法”得到橢圓的面積公式,設橢圓的長半軸長、短半軸長分別為,則橢圓的面積公式為,若橢圓的離心率為,面積為,則橢圓的標準方程為()A.或 B.或C.或 D.或6.已知直線與直線平行,則實數a的值為()A.1 B.C.1或 D.7.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現在距今五千年前長江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個小方格的邊長為,有一點從點出發(fā)每次向右或向下跳一個單位長度,且向右或向下跳是等可能性的,那么它經過次跳動后恰好是沿著饕餮紋的路線到達點的概率為()A. B.C. D.8.已知空間向量,則()A. B.C. D.9.雅言傳承文明,經典浸潤人生.某市舉辦“中華經典誦寫講大賽”,大賽分為四類:“誦讀中國”經典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.10.設等差數列的前n項和為,且,則()A.64 B.72C.80 D.14411.若,則()A. B.C. D.12.對于實數a,b,c,下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.一條光線經過點射到直線上,被反射后經過點,則入射光線所在直線的方程為___________.14.已知,,且,則的最小值為______.15.已知向量,,若,則______16.美學四大構件是:史詩、音樂、造型(繪畫、建筑等)和數學.素描是學習繪畫的必要一步,它包括明暗素描和結構素描,而學習幾何體結構素描是學習素描最重要的一步.某同學在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現“切面”是一個橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個底角為45°的直角梯形(如圖所示),則該橢圓的離心率為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線經過點.(Ⅰ)求拋物線C的方程及其焦點坐標;(Ⅱ)過拋物線C上一動點P作圓的兩條切線,切點分別為A,B,求四邊形面積的最小值.18.(12分)設點,動圓P經過點F且和直線相切,記動圓的圓心P的軌跡為曲線W(1)求曲線W的方程;(2)直線與曲線W交于A、B兩點,其中O為坐標原點,已知點T的坐標為,記直線TA,TB的斜率分別為,,則是否為定值,若是求出,不是說明理由19.(12分)在三角形ABC中,三個頂點的坐標分別為,,,且D為AC的中點.(1)求三角形ABC的外接圓M方程;(2)求直線BD與外接圓M相交產生的相交弦的長度.20.(12分)已知橢圓C經過,兩點(1)求橢圓C的標準方程;(2)直線l與C交于P,Q兩點,M是PQ的中點,O是坐標原點,,求證:的邊PQ上的高為定值21.(12分)設等差數列的前n項和為,已知(1)求數列通項公式;(2)設,數列的前n項和為.定義為不超過x的最大整數,例如.當時,求n的值22.(10分)某市共有居民60萬人,為了制定合理的節(jié)水方案,對居民用水情況進行了調查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照,,……分成9組,制成了如圖所示的頻率分布直方圖(1)求直方圖中的a值,并估計該市居民月均用水量不少于3噸的人數(單位:人);(2)估計該市居民月均用水量的眾數和中位數

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由軸截面三角形,根據已知可得圓錐底面半徑和母線長,然后可解.【詳解】軸截面如圖,其中,,所以,所以,所以圓錐的側面積.故選:B2、D【解析】由已知條件求出公比的平方,然后利用即可求解.【詳解】解:設等比數列的公比為,因為等比數列滿足,,所以,所以,故選:D.3、A【解析】根據題意得,取線段的中點,則根據題意得,,根據橢圓的定義可知,然后解出離心率的值.【詳解】因為為正三角形,所以,取線段的中點,連結,則,所以,得,所以橢圓的離心率.故選:A.【點睛】求解離心率及其范圍的問題時,解題的關鍵在于畫出圖形,根據題目中的幾何條件列出關于,,的齊次式,然后得到關于離心率的方程或不等式求解4、A【解析】先求出雙曲線C的標準方程,再求頂點到其漸近線的距離.【詳解】設等軸雙曲線C的標準方程為,因為點在雙曲線上,所以,解得,所以雙曲線C的標準方程為,故上頂點到其一條漸近線的距離為.故選:A5、B【解析】根據題意列出的關系式,即可求得,再分焦點在軸與軸兩種情況寫出標準方程.【詳解】根據題意,可得,所以橢圓的標準方程為或.故選:B6、A【解析】根據兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經檢驗可知符合題意.故選:A7、B【解析】本題首先可根據題意列出次跳動的所有基本事件,然后找出沿著饕餮紋的路線到達點的事件,最后根據古典概型的概率計算公式即可得出結果.【詳解】點從點出發(fā),每次向右或向下跳一個單位長度,次跳動的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達點的事件有:(下,下,右),故到達點的概率,故選:B.8、C【解析】A利用向量模長的坐標表示判斷;B根據向量平行的判定,是否存在實數使即可判斷;C向量數量積的坐標表示求即可判斷;D利用向量坐標的線性運算及數量積的坐標表示求即可.【詳解】因為,所以A不正確:因為不存在實數使,所以B不正確;因為,故,所以C正確;因為,所以,所以D不正確故選:C9、B【解析】由已知條件得基本事件總數為種,符合條件的事件數為3中,由古典概型公式直接計算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.10、B【解析】利用等差數列下標和性質,求得,再用等差數列前項和公式即可求解.【詳解】根據等差數列的下標和性質,,解得,.故選:B.11、D【解析】設,計算出、的值,利用平方差公式可求得結果.【詳解】設由已知可得,,因此,.故選:D.12、D【解析】判斷不等式的真假,就是要考慮在不等式的變形過程中是否遵守不等式變形的規(guī)則.【詳解】若,令,,,,,故A錯誤;若,令c=0,則,故B錯誤;若,令a=-1,b=-2,,,故C錯誤;∵,故,根據不等式運算規(guī)則,在不等式的兩邊同時乘以或除以一個正數,不等式的方向不變,故D正確.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求點關于直線的對稱點,連接,則直線即為所求.【詳解】設點關于直線的對稱點為,則,解得,所以,又點,所以,直線的方程為:,由圖可知,直線即為入射光線,所以化簡得入射光線所在直線的方程:.故答案為:.14、4【解析】利用“1”的妙用,運用基本不等式即可求解.【詳解】∵,即,∴又∵,,∴,當且僅當且,即,時,等號成立,則的最小值為4.故答案為:.15、【解析】根據向量平行求得,由此求得.【詳解】由于,所以.故答案為:16、【解析】設圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)將點代入拋物線方程求解出的值,則拋物線方程和焦點坐標可知;(2)設出點坐標,根據切線長相等以及切線垂直于半徑將四邊形的面積表示為,然后根據三角形面積公式將其表示為,根據點到點的距離公式表示出,然后結合二次函數的性質求解出四邊形面積的最小值.【詳解】(1)因為拋物線過點,所以,所以,所以拋物線的方程為:,焦點坐標為,即;(2)設,因為為圓的切線,所以,且,所以,又因為,所以,當時,四邊形的面積有最小值且最小值為.【點睛】關鍵點點睛:解答本題的關鍵在于根據圓的切線的性質將四邊形面積轉化為三角形的面積,再通過三角形的面積公式將其轉化為二次函數求最值的問題模型,對于轉化的技巧要求較高.18、(1);(2)是定值,.【解析】(1)根據給定條件結合拋物線定義直接求解作答.(2)聯立直線與拋物線方程,借助韋達定理、斜率坐標公式計算作答.【小問1詳解】過點P作直線的垂線,垂足為點N,依題意,,則動點P的軌跡是以為焦點,直線為準線的拋物線,所以曲線W的方程是.【小問2詳解】設,,由消去x并整理得:,則,,因,,則,,因此,所以.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關;(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值19、(1);(2).【解析】(1)根據題意,結合直角三角形外接圓的圓心為斜邊的中點,即可求解;(2)根據題意,結合點到直線的距離,以及弦長公式,即可求解.【小問1詳解】根據題意,易知是以BC為斜邊的直角三角形,故外接圓圓心是B,C的中點,半徑為BC長度的一半為,故三角形ABC的外接圓M方程為.【小問2詳解】因為D為AC的中點,所以易求.故直線BD的方程為,圓心到直線的距離,故相交弦的長度為.20、(1)(2)證明見解析【解析】(1)設出橢圓方程,根據的坐標求得橢圓方程.(2)對直線的斜率分成存在和不存在兩種情況進行分類討論,求得的邊PQ上的高來證得結論成立.【小問1詳解】設橢圓方程為,將坐標代入得,所以橢圓方程為.小問2詳解】當直線的斜率不存在時,關于軸對稱,由于,所以,即,直線與橢圓有兩個交點,符合題意.所以的邊PQ上的高為.當直線的斜率不存在時,設直線的方程為,由消去并化簡得①,設,則,.由于M是PQ的中點且,所以,所以,即,,,.此時①的.原點到直線的距離為.綜上所述,的邊PQ上的高為定值21、(1)(2)10【解析】(1)由等差數列的前項和公式求得公差,可得通項公式;(2)用裂項相消法求和求得,根據新定義求得,然后分組,結合等差數列的前項和公式計算后解方程可得【小問1詳解】設等差數列的公差為d,因為,則.因為,則,得.所以數列的通項公式是【小問2詳解】因為,則所以.當時,因為,則.當時,因為,則.因為,則,即,即,即.因為,所以22、(1)a0.3,72000人;(2)眾數2.25;中位數2.04.【解析】(1)根據所有小長方形面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論