![廣西南寧市外國語學校2023年高二數(shù)學第一學期期末綜合測試模擬試題含解析_第1頁](http://file4.renrendoc.com/view/f10d60ea4ba9341884eadf8c22d53611/f10d60ea4ba9341884eadf8c22d536111.gif)
![廣西南寧市外國語學校2023年高二數(shù)學第一學期期末綜合測試模擬試題含解析_第2頁](http://file4.renrendoc.com/view/f10d60ea4ba9341884eadf8c22d53611/f10d60ea4ba9341884eadf8c22d536112.gif)
![廣西南寧市外國語學校2023年高二數(shù)學第一學期期末綜合測試模擬試題含解析_第3頁](http://file4.renrendoc.com/view/f10d60ea4ba9341884eadf8c22d53611/f10d60ea4ba9341884eadf8c22d536113.gif)
![廣西南寧市外國語學校2023年高二數(shù)學第一學期期末綜合測試模擬試題含解析_第4頁](http://file4.renrendoc.com/view/f10d60ea4ba9341884eadf8c22d53611/f10d60ea4ba9341884eadf8c22d536114.gif)
![廣西南寧市外國語學校2023年高二數(shù)學第一學期期末綜合測試模擬試題含解析_第5頁](http://file4.renrendoc.com/view/f10d60ea4ba9341884eadf8c22d53611/f10d60ea4ba9341884eadf8c22d536115.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣西南寧市外國語學校2023年高二數(shù)學第一學期期末綜合測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,隨機變量X的分布列如下表所示,隨機變量Y滿足,則當a在上增大時,關于的表述下列正確的是()X013PabA增大 B.減小C.先增大后減小 D.先減小后增大2.已知橢圓的長軸長為10,焦距為8,則該橢圓的短軸長等于()A.3 B.6C.8 D.123.等比數(shù)列的各項均為正數(shù),且,則=()A.8 B.16C.32 D.644.在平面直角坐標系中,已知的頂點,,其內(nèi)切圓圓心在直線上,則頂點C的軌跡方程為()A. B.C. D.5.已知是等差數(shù)列,,,則公差為()A.6 B.C. D.26.設正數(shù)數(shù)列的前項和為,數(shù)列的前項積為,且,則()A. B.C. D.7.酒駕是嚴重危害交通安全的違法行為.根據(jù)國家有關規(guī)定:100血液中酒精含量在20~80之間為酒后駕車,80及以上為醉酒駕車.假設某駕駛員喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量會以每小時20%的速度減少,若他想要在不違法的情況下駕駛汽車,則至少需經(jīng)過的小時數(shù)約為()(參考數(shù)據(jù):,)A.6 B.7C.8 D.98.設橢圓C:的右焦點為F,過原點O的動直線l與橢圓C交于A,B兩點,那么的周長的取值范圍為()A. B.C. D.9.已知橢圓上一點到左焦點的距離為,是的中點,則()A.1 B.2C.3 D.410.已知是空間的一個基底,若,,若,則()A. B.C.3 D.11.“,”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.在中,若,,則外接圓半徑為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù),則_______14.點到拋物線上的點的距離的最小值為________.15.在棱長為1的正方體中,___________.16.若點到點的距離比它到定直線的距離小1,則點滿足的方程為_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.18.(12分)設,分別是橢圓()的左、右焦點,E的離心率為.短軸長為2.(1)求橢圓E的方程:(2)過點的直線l交橢圓E于A,B兩點,是否存在實數(shù)t,使得恒成立?若存在,求出t的值;若不存在,說明理由.19.(12分)數(shù)列中,,且.(1)證明;數(shù)列是等比數(shù)列.(2)若,求數(shù)列的前n項和.20.(12分)如圖,在直三棱柱中,,E、F分別是、的中點(1)求證:平面;(2)求證:平面21.(12分)已知函數(shù).(1)當時,求函數(shù)的極值;(2)若對,恒成立,求的取值范圍.22.(10分)已知直線經(jīng)過點,,直線經(jīng)過點,且.(1)分別求直線,的方程;(2)設直線與直線的交點為,求外接圓的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先求得參數(shù)b,再去依次去求、、,即可判斷出的單調(diào)性.【詳解】由得則,由得a在上增大時,增大.故選:A2、B【解析】根據(jù)橢圓中的關系即可求解.【詳解】橢圓的長軸長為10,焦距為8,所以,,可得,,所以,可得,所以該橢圓的短軸長,故選:B.3、B【解析】由等比數(shù)列的下標和性質(zhì)即可求得答案.【詳解】由題意,,所以.故選:B.4、A【解析】根據(jù)圖可得:為定值,利用根據(jù)雙曲線定義,所求軌跡是以、為焦點,實軸長為6的雙曲線的右支,從而寫出其方程即得【詳解】解:如圖設與圓切點分別為、、,則有,,,所以根據(jù)雙曲線定義,所求軌跡是以、為焦點,實軸長為4的雙曲線的右支(右頂點除外),即、,又,所以,所以方程為故選:A5、C【解析】設的首項為,把已知的兩式相減即得解.【詳解】解:設的首項為,根據(jù)題意得,兩式相減得.故選:C6、B【解析】當可求得;當時,可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式可推導得到,由求得后,利用可求得結果.【詳解】當時,,解得:;當時,由得:,即,,數(shù)列是以為首項,為公差的等差數(shù)列,,解得:,,經(jīng)檢驗:滿足,,故選:B.7、C【解析】根據(jù)題意列出不等式,利用指對數(shù)冪的互化和對數(shù)的運算公式即可解出不等式.【詳解】設該駕駛員至少需經(jīng)過x個小時才能駕駛汽車,則,所以,則,所以該駕駛員至少需經(jīng)過約8個小時才能駕駛汽車.故選:C8、A【解析】根據(jù)橢圓的對稱性橢圓的定義可得,結合的范圍求的周長的取值范圍.【詳解】的周長,又因為A,B兩點為過原點O的動直線l與橢圓C的交點,所以A,B兩點關于原點對稱,橢圓C的左焦點為,則,所以,又因為三點不共線,所以,所以的周長的取值范圍為,故選:A.9、A【解析】由橢圓的定義得,進而根據(jù)中位線定理得.【詳解】解:由橢圓方程得,即,因為由橢圓的定義得,,所以,因為是的中點,是的中點,所以.故選:A10、C【解析】由,可得存在實數(shù),使,然后將代入化簡可求得結果【詳解】,,因,所以存在實數(shù),使,所以,所以,所以,得,,所以,故選:C11、A【解析】由正切函數(shù)性質(zhì),應用定義法判斷條件間充分、必要關系.【詳解】當,,則,當時,,.∴“,”是“”的充分不必要條件.故選:A12、A【解析】根據(jù)三角形面積公式求出c,再由余弦定理求出a,根據(jù)正弦定理即可求外接圓半徑.【詳解】,,,解得由正弦定理可得:,所以故選:A二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】先對函數(shù)求導,然后令可求出的值【詳解】因為,所以,則,解得故答案為:14、【解析】設出拋物線上點的坐標,利用兩點間距離公式,配方求出最小值.【詳解】設拋物線上的點坐標,則,當時,取得最小值,且最小值為.故答案為:15、1【解析】根據(jù)向量的加法及向量數(shù)量積的運算性質(zhì)求解.【詳解】如圖,在正方體中,,故答案為:116、【解析】根據(jù)拋物線的定義可得動點的軌跡方程【詳解】點到點的距離比它到直線的距離少1,所以點到點的距離與到直線的距離相等,所以其軌跡為拋物線,焦點為,準線為,所以方程為,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意,通過解方程求出公比,即可求解;(2)根據(jù)題意,求出,結合組合法求和,即可求解.小問1詳解】根據(jù)題意,設公比為,且,∵,,∴,解得或(舍),∴.【小問2詳解】根據(jù)題意,得,故,因此.18、(1)(2)存在,【解析】(1)由條件列出,,的方程,解方程求出,,,由此可得橢圓E的方程:(2)當直線的斜率存在時,設直線的方程為,聯(lián)立直線的方程與橢圓方程化簡可得,設,,可得,,由此證明,再證明當直線的斜率不存在時也成立,由此確定存在實數(shù)t,使得恒成立【小問1詳解】由已知得,離心率,所以,故橢圓E的方程為.【小問2詳解】當直線l的斜率存在時,設,,,聯(lián)立方程組得,,所以,..,,所以.所以.當直線l的斜率不存在時,,聯(lián)立方程組,得,.,,所以.綜上,存在實數(shù)使得恒成立.【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關系,并結合題設條件建立有關參變量的等量關系(2)涉及到直線方程的設法時,務必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.19、(1)證明見解析;(2).【解析】(1)根據(jù)遞推公式,結合等差數(shù)列的定義、等比數(shù)列的定義進行證明即可;(2)運用裂項相消法進行求解即可.【小問1詳解】∵,∴,又∵,∴,∴數(shù)列是首項為0,公差為1的等差數(shù)列,∴,∴,從而,∴數(shù)列是首項為2,公比為2的等比數(shù)列;【小問2詳解】由(1)知,則,∴,∴.20、(1)證明見解析;(2)證明見解析.【解析】(1)連接,交于點M,連接ME,則M為中點.根據(jù)三角形的中位線定理和平行四邊形的判斷和性質(zhì)可證得,再由線面平行的判定定理可得證;(2)由線面垂直的性質(zhì)和判定可得證.【詳解】證明:(1)連接,交于點M,連接ME,則M為中點因為E、F分別是與的中點,所以,則,從而為平行四邊形,則又因為平面平面,所以平面(2)由平面,因為平面,所以而,M為的中點,所以因為,所以平面,由(1)有,故平面21、(1)極小值為,無極大值;(2).【解析】(1)對函數(shù)進行求導、列表、判斷函數(shù)的單調(diào)性,最后根據(jù)函數(shù)極值的定義進行求解即可;(2)對進行常變量分離,然后構造新函數(shù),對新函數(shù)進行求導,判斷其單調(diào)性,進而求出新函數(shù)的最值,最后根據(jù)題意求出的取值范圍即可.【詳解】(1)函數(shù)的定義域為,當時,.由,得.當變化時,,的變化情況如下表-0+單調(diào)遞減極小值單調(diào)遞增所以在上單調(diào)遞減,上單調(diào)遞增,所以函數(shù)的極小值為,無極大值.(2)對,恒成立,即對,恒成立.令,則.由得,當時,,單調(diào)遞增;當時,,單調(diào)遞減,所以,因此.所以的取值范圍是.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性、極值、最值,考查了構造函數(shù)法、常變量分離法,考查了數(shù)學運算能力和分類討論思想.22、(1);(2).【解析】(1)根據(jù)兩點式即可求出直線l1的方程,根據(jù)直線垂直的關系即可求l2的方程;(2)先求出C點坐標,通過三角形的長度關系知道三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)機售賣租賃合同范本
- 個人領養(yǎng)寵物合同范例
- 公建房屋維修合同范本
- 寫退貨合同范本
- 2人合伙人協(xié)議合同范例
- 農(nóng)村水井租賃合同范例
- 農(nóng)村住宅買賣租賃合同范本
- 仿古面磚采購合同范本
- 農(nóng)村水產(chǎn)養(yǎng)殖租賃合同范例
- 養(yǎng)殖奶牛合作合同范例
- 山東省濟寧市2025屆高三歷史一輪復習高考仿真試卷 含答案
- 五年級數(shù)學(小數(shù)乘法)計算題專項練習及答案
- 交通法規(guī)教育課件
- 產(chǎn)前診斷室護理工作總結
- 6S管理知識培訓課件
- 湖南省長郡中學2023-2024學年高二下學期寒假檢測(開學考試)物理 含解析
- 先天性腎上腺皮質(zhì)增生癥(CAH)課件
- 水利工程設計變更表格
- 了不起的狐貍爸爸-全文打印
- 03fusionsphere虛擬化場景概要設計模板hld
- 火災接警處置流程圖
評論
0/150
提交評論