數(shù)學(xué)課程標(biāo)準(zhǔn)的新變化及課堂教學(xué)改革的深化_第1頁
數(shù)學(xué)課程標(biāo)準(zhǔn)的新變化及課堂教學(xué)改革的深化_第2頁
數(shù)學(xué)課程標(biāo)準(zhǔn)的新變化及課堂教學(xué)改革的深化_第3頁
數(shù)學(xué)課程標(biāo)準(zhǔn)的新變化及課堂教學(xué)改革的深化_第4頁
數(shù)學(xué)課程標(biāo)準(zhǔn)的新變化及課堂教學(xué)改革的深化_第5頁
已閱讀5頁,還剩217頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

數(shù)學(xué)課程標(biāo)準(zhǔn)的新變化

及課堂教學(xué)改革的深化

一、為何要修訂課程標(biāo)準(zhǔn)二、數(shù)學(xué)課標(biāo)的主要變化三、數(shù)學(xué)課堂教學(xué)值得關(guān)注的幾個問題

一、為何要修訂課程標(biāo)準(zhǔn)?

基礎(chǔ)教育課程改革已走過了10年的歷程

2001年,教育部啟動了新世紀(jì)基礎(chǔ)教育課程改革,頒布了義務(wù)教育21個學(xué)科的課程標(biāo)準(zhǔn)(實驗稿)。在實驗的基礎(chǔ)上,2003年,教育部開始著手課程標(biāo)準(zhǔn)的修訂工作。2005年,正式組建數(shù)學(xué)課標(biāo)修訂組對課標(biāo)進(jìn)行修訂。1.修訂課程標(biāo)準(zhǔn)是深化

基礎(chǔ)教育課程改革的重要任務(wù)

10年來,課程改革取得了實質(zhì)性進(jìn)展,各學(xué)科課程標(biāo)準(zhǔn)在實驗過程中接受了實踐的檢驗,取得了豐碩的成果,積累了寶貴的經(jīng)驗。另一方面,這次改革中也存在著需要進(jìn)一步改進(jìn)和完善之處。需要通過修改課標(biāo)不斷深化基礎(chǔ)教育課程改革

2.通過修訂課標(biāo),使教育

更好地適應(yīng)時代發(fā)展要求十年來中國社會的巨大變化和科學(xué)技術(shù)的快速發(fā)展,也要求教育理念和課程內(nèi)容與時俱進(jìn),不斷更新。特別是建立創(chuàng)新型國家目標(biāo)的提出對深入推進(jìn)素質(zhì)教育、培養(yǎng)創(chuàng)新人才提出新要求。修訂和完善課標(biāo)是鞏固和發(fā)展改革成果,促進(jìn)教育更好適應(yīng)時代發(fā)展的必然要求。

3.修訂義教課標(biāo)也是落實

《教育規(guī)劃綱要》的重要舉措

《教育規(guī)劃綱要》對基礎(chǔ)教育課程教材建設(shè)提出了明確要求:“堅持德育為先”、“堅持能力為重”、“堅持全面發(fā)展”、“調(diào)整教材內(nèi)容、科學(xué)設(shè)計課程難度”、“深入研究、確定不同教育階段學(xué)生必須掌握的核心內(nèi)容”等一系列任務(wù)要求。需要通過修訂課標(biāo)落實這些要求。4.通過修訂課標(biāo)更好地

發(fā)揮其對課堂教學(xué)的指導(dǎo)作用數(shù)學(xué)課程改革的基礎(chǔ)性工作是研制《數(shù)學(xué)課程標(biāo)準(zhǔn)》,這也是建國以來的第一次。設(shè)計—實驗—反饋—實施課程改革推進(jìn)的歷程是課程標(biāo)準(zhǔn)從研制到不斷修訂而最終趨于完善的過程,修訂課標(biāo)是深化基礎(chǔ)教育課程改革的重要任務(wù)第一線的教師不僅是新課程的實施者,也是新課程的設(shè)計者和制定者課程標(biāo)準(zhǔn)與課堂教學(xué)的關(guān)系

——課程標(biāo)準(zhǔn)作為課程的頂層設(shè)計,它與一線的課堂教學(xué)有什么樣的關(guān)系呢?ChongqingNormalUniversity

——課程標(biāo)準(zhǔn)的價值取向、基本理念、目標(biāo)要求及內(nèi)容標(biāo)準(zhǔn)必然對教師的教學(xué)產(chǎn)生重要影響,并成為教師課堂教學(xué)的基本依據(jù)。搞好數(shù)學(xué)教學(xué)應(yīng)更深入學(xué)習(xí)認(rèn)識數(shù)學(xué)課程標(biāo)準(zhǔn),更好地發(fā)揮數(shù)學(xué)課程標(biāo)準(zhǔn)應(yīng)有的功能。課程標(biāo)準(zhǔn)與教學(xué)的關(guān)系——教育目標(biāo)的

層級性及教學(xué)內(nèi)容的規(guī)定性一級教育目的二級課程目標(biāo)三級教學(xué)目標(biāo)教育目標(biāo)的層級性課程標(biāo)準(zhǔn)內(nèi)容標(biāo)準(zhǔn)教學(xué)內(nèi)容教學(xué)內(nèi)容的規(guī)定性教材此次加強(qiáng)了課標(biāo)修訂的專業(yè)力量課程標(biāo)準(zhǔn)修訂組專家分布:

中科院、工程院:6人3.8%

科研機(jī)構(gòu):11人6.7%

高等院校:104人66%

國家機(jī)關(guān):3人1.9%

中小學(xué)教研人員和教師:28人17.6%

出版單位:6人3.8%

合計人數(shù):158人

(其中:原課程標(biāo)準(zhǔn)研制組專家共68人)二、數(shù)學(xué)課程標(biāo)準(zhǔn)的主要變化

此次課標(biāo)修訂特別注意體現(xiàn)如下要求:課程改革的核心是人才培養(yǎng)模式變化要加強(qiáng)對學(xué)生創(chuàng)新精神和實踐能力的培養(yǎng)要以課程為載體實實在在推進(jìn)素質(zhì)教育要體現(xiàn)教育的均衡、公平,要為所有學(xué)生提供良好的教育要體現(xiàn)義務(wù)教育課程的基本特性:普及性、基礎(chǔ)性、發(fā)展性注意處理好幾個關(guān)系:注意用科學(xué)、辯證的態(tài)度處理好數(shù)學(xué)課程內(nèi)容及教學(xué)中的一些基本關(guān)系。如:

重視過程與關(guān)注結(jié)果教師講授與學(xué)生自主面向全體與因材施教生活化情境化與知識系統(tǒng)性此外,還有直觀形象與抽象思維、合情推理與演繹推理等的關(guān)系。數(shù)學(xué)課標(biāo)修訂的主要方面:

1.關(guān)于前言和基本理念2.關(guān)于設(shè)計思路3.關(guān)于課程目標(biāo)4.關(guān)于課程內(nèi)容5.關(guān)于課程實施

1.關(guān)于前言和基本理念的修改(在前言中增加了課程性質(zhì)的描述、修改、豐富了基本理念的一些提法)《前言》增加了對數(shù)學(xué)課程性質(zhì)的表述數(shù)學(xué)課程的性質(zhì)表述為,“義務(wù)教育階段的數(shù)學(xué)課程是培養(yǎng)公民素質(zhì)的基礎(chǔ)課程,具有基礎(chǔ)性、普及性和發(fā)展性。義務(wù)教育階段的數(shù)學(xué)課程能為學(xué)生未來生活、工作和學(xué)習(xí)奠定重要的基礎(chǔ)。數(shù)學(xué)課程能使學(xué)生掌握必備的基礎(chǔ)知識和基本技能;培養(yǎng)學(xué)生的抽象思維和推理能力;培養(yǎng)學(xué)生的創(chuàng)新意識和實踐能力;促進(jìn)學(xué)生在情感、態(tài)度與價值觀等方面得到發(fā)展?!被纠砟罘从吵鑫覀儗?shù)學(xué)、數(shù)學(xué)課程、數(shù)學(xué)教學(xué)以及評價等方面應(yīng)具有的基本認(rèn)識和觀念、態(tài)度,它是制定和實施數(shù)學(xué)課程的指導(dǎo)思想。《標(biāo)準(zhǔn)》中的每一部份內(nèi)容都要貫穿基本理念的思想和要求。同時,教師作為課程的實施者,更應(yīng)自覺樹立起正確的數(shù)學(xué)觀、數(shù)學(xué)課程觀、數(shù)學(xué)教學(xué)觀等數(shù)學(xué)教育觀念,并用以指導(dǎo)自己的教學(xué)實踐活動。什么是課程的基本理念?

關(guān)于基本理念的修改原課標(biāo):

數(shù)學(xué)課程數(shù)學(xué)數(shù)學(xué)學(xué)習(xí)數(shù)學(xué)教學(xué)評價信息技術(shù)修改后:

數(shù)學(xué)課程課程內(nèi)容

教學(xué)活動學(xué)習(xí)評價信息技術(shù)關(guān)于數(shù)學(xué)觀

——如何認(rèn)識數(shù)學(xué)原課標(biāo):數(shù)學(xué)是人們對客觀世界定性把握和定量刻畫、逐漸抽象概括、形成方法和理論,并進(jìn)行廣泛應(yīng)用的過程。數(shù)學(xué)作為一種普遍適用的技術(shù),有助于人們收集、整理、描述信息,建立數(shù)學(xué)模型,進(jìn)而解決問題,直接為社會創(chuàng)造價值。數(shù)學(xué)是人們生活、勞動和學(xué)習(xí)必不可少的工具,能夠幫助人們處理數(shù)據(jù)、進(jìn)行計算、推理和證明,數(shù)學(xué)模型可以有效地描述自然現(xiàn)象和社會現(xiàn)象;數(shù)學(xué)為其他科學(xué)提供了語言、思想和方法,是一切重大技術(shù)發(fā)展的基礎(chǔ);數(shù)學(xué)在提高人的推理能力、抽象能力、想像力和創(chuàng)造力等方面有著獨特的作用;數(shù)學(xué)是人類的一種文化,它的內(nèi)容、思想、方法和語言是現(xiàn)代文明的重要組成部分。課標(biāo)修改稿:數(shù)學(xué)是研究數(shù)量關(guān)系和空間形式的科學(xué)。

數(shù)學(xué)作為對于客觀現(xiàn)象抽象概括而逐漸形成的科學(xué)語言與工具

……數(shù)學(xué)是人類文化的重要組成部分,數(shù)學(xué)素養(yǎng)是現(xiàn)代社會每一個公民應(yīng)該具備的基本素養(yǎng)

要發(fā)揮數(shù)學(xué)在培養(yǎng)人的(理性)思維能力和創(chuàng)新能力方面的不可替代的作用

兩種表述結(jié)合起來更好通過靜態(tài)表述,揭示學(xué)科內(nèi)涵是一種傳統(tǒng)規(guī)范,也與高中課標(biāo)協(xié)調(diào)將數(shù)學(xué)視為一種活動、一種過程,今天來看也是很主流的數(shù)學(xué)哲學(xué)觀,動態(tài)表述能很好支撐注重過程的數(shù)學(xué)新課堂靜態(tài)與動態(tài)結(jié)合,有利于辯證看待數(shù)學(xué)的本質(zhì),樹立正確的數(shù)學(xué)觀和數(shù)學(xué)教學(xué)觀

體現(xiàn)數(shù)學(xué)課程核心理念的三句話:人人學(xué)有價值的數(shù)學(xué)人人都能獲得必需的數(shù)學(xué)不同的人在數(shù)學(xué)上得到不同的發(fā)展人人都能獲得良好的數(shù)學(xué)教育不同的人在數(shù)學(xué)上得到不同的發(fā)展

樹立正確的課程觀

關(guān)于“人人都能獲得良好的數(shù)學(xué)教育”

與過去的提法相比:

出發(fā)點不變(人人、不同的人);有更深的意義和更廣的內(nèi)涵;落腳點是數(shù)學(xué)教育而不是數(shù)學(xué)內(nèi)容;體現(xiàn)了更強(qiáng)的時代精神和要求(公平的、優(yōu)質(zhì)的、均衡的、和諧的教育)。何謂“良好的數(shù)學(xué)教育”?良好的數(shù)學(xué)教育對于學(xué)生來說是適宜的、滿足發(fā)展需求的教育良好的數(shù)學(xué)教育是全面實現(xiàn)育人目標(biāo)的教育良好的數(shù)學(xué)教育是促進(jìn)公平、注重質(zhì)量的教育良好的數(shù)學(xué)教育是使學(xué)生能可持續(xù)發(fā)展的教育

良好的數(shù)學(xué)教育需要

在各個維度上體現(xiàn)提出“良好的數(shù)學(xué)教育”需要我們重新審視數(shù)學(xué)課程的目標(biāo)、內(nèi)容,也需要我們在課堂教學(xué)實施中尋找切入點!“不同的人在數(shù)學(xué)上

得到不同的發(fā)展”體現(xiàn)了數(shù)學(xué)教育中對人的主體性地位的回歸與尊重需要正視學(xué)生的差異,尊重學(xué)生的個性,促成發(fā)展的多樣性

“不同的人在數(shù)學(xué)上得到不同的發(fā)展”本質(zhì)上應(yīng)促進(jìn)學(xué)生更好地自主發(fā)展

理念中新增加的提法:課程內(nèi)容要處理好三個關(guān)系有效的教學(xué)活動是什么

數(shù)學(xué)教學(xué)活動的本質(zhì)要求培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣注重啟發(fā)式正確看待教師的主導(dǎo)作用處理好評價中的關(guān)系注意信息技術(shù)與課程內(nèi)容的整合課程內(nèi)容要處理好三個關(guān)系:

課程內(nèi)容的組織要重視過程,處理好過程與結(jié)果的關(guān)系;要重視直觀,處理好直觀與抽象的關(guān)系;要重視直接經(jīng)驗,處理好直接經(jīng)驗與間接經(jīng)驗的關(guān)系。

我們需要什么

樣的數(shù)學(xué)教學(xué)?

教學(xué)活動是師生積極參與、交往互動、共同發(fā)展的過程。有效的教學(xué)活動是學(xué)生學(xué)與教師教的統(tǒng)一,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者與合作者。

數(shù)學(xué)教學(xué)活動的本質(zhì)是什么?樹立正確的數(shù)學(xué)教學(xué)觀什么是數(shù)學(xué)課堂教

學(xué)中最需要做的事?數(shù)學(xué)教學(xué)活動,特別是課堂教學(xué)應(yīng)激發(fā)學(xué)生興趣,調(diào)動學(xué)生積極性,引發(fā)學(xué)生的數(shù)學(xué)思考,鼓勵學(xué)生的創(chuàng)造性思維;要注重培養(yǎng)學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣,使學(xué)生掌握恰當(dāng)?shù)臄?shù)學(xué)學(xué)習(xí)方法。改變?nèi)瞬排囵B(yǎng)模式要從這些方面入手!原課標(biāo):“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式?!?/p>

學(xué)生學(xué)習(xí)應(yīng)當(dāng)是一個生動活潑的、主動的和富有個性的過程。認(rèn)真聽講、積極思考、動手實踐、自主探索、合作交流等都是學(xué)習(xí)數(shù)學(xué)的重要方式。學(xué)生應(yīng)當(dāng)有足夠的時間和空間經(jīng)歷觀察、實驗、猜測、計算、推理、驗證等活動過程。原課標(biāo):教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上。教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機(jī)會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。

教師教學(xué)應(yīng)該以學(xué)生的認(rèn)知發(fā)展水平和已有的經(jīng)驗為基礎(chǔ),面向全體學(xué)生,注重啟發(fā)式和因材施教。教師要發(fā)揮主導(dǎo)作用,處理好講授與學(xué)生自主學(xué)習(xí)的關(guān)系,引導(dǎo)學(xué)生獨立思考、主動探索、合作交流,使學(xué)生理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得基本的數(shù)學(xué)活動經(jīng)驗。原課標(biāo):“對數(shù)學(xué)學(xué)習(xí)的評價要關(guān)注學(xué)生學(xué)習(xí)的結(jié)果,更要關(guān)注他們學(xué)習(xí)的過程;要關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平。更要關(guān)注他們在數(shù)學(xué)活動中所表現(xiàn)出來的情感與態(tài)度,幫助學(xué)生認(rèn)識自我,建立信心?!?/p>

應(yīng)建立目標(biāo)多元、方法多樣的評價體系。評價既要關(guān)注學(xué)生學(xué)習(xí)的結(jié)果,也要重視學(xué)習(xí)的過程;既要關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,也要重視學(xué)生在數(shù)學(xué)活動中所表現(xiàn)出來的情感與態(tài)度,幫助學(xué)生認(rèn)識自我、建立信心。樹立正確的評價觀如何看待信息技術(shù)的運(yùn)用?數(shù)學(xué)課程的設(shè)計與實施應(yīng)根據(jù)實際情況合理地運(yùn)用現(xiàn)代信息技術(shù),要注意信息技術(shù)與課程內(nèi)容的整合,注重實效。要充分考慮信息技術(shù)對數(shù)學(xué)學(xué)習(xí)內(nèi)容和方式的影響,開發(fā)并向?qū)W生提供豐富的學(xué)習(xí)資源,把現(xiàn)代信息技術(shù)作為學(xué)生學(xué)習(xí)數(shù)學(xué)和解決問題的有力工具,有效地改進(jìn)教與學(xué)的方式2.關(guān)于設(shè)計思路的修改學(xué)段劃分保持不變對課程目標(biāo)動詞及水平要求的設(shè)計基本保持不變,增加了目標(biāo)動詞的同義詞對四個學(xué)習(xí)領(lǐng)域的名稱作適當(dāng)調(diào)整對課程內(nèi)容中的若干核心概念作適當(dāng)調(diào)整,對其意義作更明確的闡釋核心概念課程目標(biāo)的行為動詞及水平:《標(biāo)準(zhǔn)》使用“了解、理解、掌握、運(yùn)用”等術(shù)語表述學(xué)習(xí)活動結(jié)果目標(biāo)的不同水平,使用“經(jīng)歷、體驗、探索”等術(shù)語表述學(xué)習(xí)活動過程目標(biāo)的不同程度。這些詞的基本含義如下。了解:從具體事例中知道或舉例說明對象的有關(guān)特征;根據(jù)對象的特征,從具體情境中辨認(rèn)或者舉例說明對象。理解:描述對象的特征和由來,闡述此對象與相關(guān)對象之間的區(qū)別和聯(lián)系。掌握:在理解的基礎(chǔ)上,把對象用于新的情境。運(yùn)用:綜合使用已掌握的對象,選擇或創(chuàng)造適當(dāng)?shù)姆椒ń鉀Q問題。經(jīng)歷:在特定的數(shù)學(xué)活動中,獲得一些感性認(rèn)識。體驗:參與特定的數(shù)學(xué)活動,主動認(rèn)識或驗證對象的特征,獲得一些經(jīng)驗。探索:獨立或與他人合作參與特定的數(shù)學(xué)活動,理解或提出問題,尋求解決問題的思路,發(fā)現(xiàn)對象的特征及其與相關(guān)對象的區(qū)別和聯(lián)系,獲得一定的理性認(rèn)識。

在標(biāo)準(zhǔn)中,使用了一些詞,表述與上述術(shù)語同等水平的要求程度。這些詞與上述術(shù)語之間的關(guān)系如下:(1)了解,同類詞:知道,初步認(rèn)識;(2)理解,同類詞:認(rèn)識,會;(3)掌握,同類詞:能。(4)運(yùn)用,同類詞:證明。(5)經(jīng)歷,同類詞:感受、嘗試。(6)體驗,同類詞:體會。對四個學(xué)習(xí)領(lǐng)域名稱的修改:

——總稱呼改為課程內(nèi)容的四個部分原課標(biāo):數(shù)與代數(shù)空間與圖形統(tǒng)計與概率實踐與綜合應(yīng)用修改后:數(shù)與代數(shù)圖形與幾何統(tǒng)計與概率綜合與實踐主要的關(guān)鍵詞:

——現(xiàn)稱為“核心概念”原課標(biāo):數(shù)感符號感空間觀念(6個)統(tǒng)計觀念應(yīng)用意識推理能力修改后:數(shù)感符號意識運(yùn)算能力(10個)模型思想空間觀念幾何直觀推理能力數(shù)據(jù)分析觀念應(yīng)用意識創(chuàng)新意識關(guān)于《標(biāo)準(zhǔn)》中10個核心概念的分析核心概念有何意義?首先應(yīng)該注意到,這些核心概念的內(nèi)涵在性質(zhì)上是體現(xiàn)的學(xué)習(xí)主體——學(xué)生的特征,它們涉及的是學(xué)生在數(shù)學(xué)學(xué)習(xí)中應(yīng)該建立和培養(yǎng)的關(guān)于數(shù)學(xué)的感悟、觀念、意識、思想、能力等,因此,可以認(rèn)為,它們是學(xué)生在義務(wù)教育階段數(shù)學(xué)課程中最應(yīng)培養(yǎng)的數(shù)學(xué)素養(yǎng),是促進(jìn)學(xué)生發(fā)展的重要方面。核心概念往往是

一類課程內(nèi)容的核心或聚焦點第二,《標(biāo)準(zhǔn)》將這些核心概念放在課程內(nèi)容設(shè)計欄目下提出,是想表明,這些概念不是設(shè)計者超乎于數(shù)學(xué)課程內(nèi)容之上外加的,而是實實在在蘊(yùn)涵于具體的課程內(nèi)容之中,或者與課程內(nèi)容緊密結(jié)合的。從這一意義上看,核心概念往往是一類課程內(nèi)容的核心或聚焦點,它有利于我們把握課程內(nèi)容的線索和層次,抓住教學(xué)中的關(guān)鍵。并在數(shù)學(xué)內(nèi)容的教學(xué)中有機(jī)地去發(fā)展學(xué)生的數(shù)學(xué)素養(yǎng)。第三,核心概念本質(zhì)上體現(xiàn)的是數(shù)學(xué)的基本思想。數(shù)學(xué)基本思想集中反映為數(shù)學(xué)抽象、數(shù)學(xué)推理和數(shù)學(xué)模型思想。比如,與“數(shù)與代數(shù)”部分內(nèi)容直接關(guān)聯(lián)的數(shù)感、符號意識、運(yùn)算能力、推理能力和模型思想等核心概念就不同程度的直接體現(xiàn)了抽象、推理和模型的基本思想要求。這啟示我們,核心概念的教學(xué)要更關(guān)注其數(shù)學(xué)思想本質(zhì)。第四,這些核心概念都是數(shù)學(xué)課程的目標(biāo)點,也應(yīng)該成為數(shù)學(xué)課堂教學(xué)的目標(biāo),僅以“數(shù)學(xué)思考”和“問題解決”部分的目標(biāo)設(shè)定來看,《標(biāo)準(zhǔn)》就提出了:“建立數(shù)感、符號意識和空間觀念,初步形成幾何直觀和運(yùn)算能力”;“發(fā)展數(shù)據(jù)分析觀念,感受隨機(jī)現(xiàn)象”;“發(fā)展合情推理和演繹推理能力”;“增強(qiáng)應(yīng)用意識,提高實踐能力”;“體驗解決問題方法的多樣性,發(fā)展創(chuàng)新意識”。這些目標(biāo)表述幾乎涵蓋了所有的核心概念。所以,把握好這些核心概念無論對于教師教學(xué)和學(xué)生學(xué)習(xí)都是極為重要的。核心概念之一:數(shù)感

——存在數(shù)感嗎?(1)兩個實例給人的啟示:實例一:2010年2月25日,國家統(tǒng)計局公布的《2009年國民經(jīng)濟(jì)和社會發(fā)展統(tǒng)計公報》顯示:我國70個大中城市房屋銷售價格同比上漲1.5%,其中新建住宅價格上漲1.3%。此報告一出立刻引起全國一片嘩然。公眾普遍反映此數(shù)據(jù)與實際狀況嚴(yán)重不符。面對公眾質(zhì)疑,國家統(tǒng)計局召開緊急會議,討論統(tǒng)計數(shù)據(jù)來源是否真實可靠?統(tǒng)計方法是否科學(xué)?輿論提出的一個問題是:不論統(tǒng)計部門統(tǒng)計方式是否科學(xué),為何公眾對房價的感覺與統(tǒng)計結(jié)果是大相徑庭的呢?此例說明數(shù)感的確是存在的,它與公眾的社會生活息息相關(guān),并已成為現(xiàn)代社會公民所具有的基本數(shù)學(xué)素養(yǎng)的一部分實例二:一老師在教學(xué)指數(shù)冪的意義時,拋出一個現(xiàn)實情境問題:將一張紙對折32次,它的厚度有多大呢?老師給出的結(jié)論使學(xué)生在感到驚訝之余,更表示出強(qiáng)烈的質(zhì)疑。該問題的結(jié)論是:其厚度可以超過世界最高峰珠穆朗瑪峰的高度。此例就其實質(zhì)看,教師在這里利用的是,學(xué)生基于實際操作(將紙對折若干次)所建立起來的2

的直觀感覺與數(shù)學(xué)科學(xué)計算得出的結(jié)果之間的巨大反差,由此創(chuàng)設(shè)出一個生動的極富吸引力的學(xué)習(xí)環(huán)境這一實例說明,學(xué)生在學(xué)習(xí)數(shù)學(xué)概念時,其固有的數(shù)感不僅在起作用,而且老師若能適時地利用學(xué)生原有數(shù)感的特點,使其形成課堂教學(xué)中的認(rèn)知沖突,則能大大提高課堂教學(xué)的效率。32(2)何為數(shù)感?“數(shù)感”一詞的英文表述為“NumberSense”,可翻譯為多種意思,如感覺、感官、理念、意識、領(lǐng)悟等等。那么,反映在數(shù)學(xué)課程中的數(shù)感基本內(nèi)涵究竟應(yīng)該如何理解呢?事實上,在這一點上人們的認(rèn)識仍然是多元的。一些關(guān)于數(shù)感內(nèi)涵的說法其一,認(rèn)為數(shù)感是“關(guān)于數(shù)字(量)的一種直覺”其二,認(rèn)為數(shù)感與語感、方向感、美感等類似,都會有一種“直感”的涵義,具有對特定對象的一種敏感性及相關(guān)的鑒別(鑒賞)能力其三,認(rèn)為數(shù)感是一種主動地、自覺地或自動化地理解數(shù)和運(yùn)用數(shù)的態(tài)度和意識,是一種基本的數(shù)學(xué)素養(yǎng)其四,認(rèn)為數(shù)感包含感覺、知覺、觀念、能力,可以用“知識”來統(tǒng)一指稱,這一知識是程序性的、內(nèi)隱的、非結(jié)構(gòu)性的《標(biāo)準(zhǔn)》關(guān)于數(shù)感的提法此次修訂,認(rèn)真聽取了各方意見,吸納了前期實驗研究的一些成果,重新對數(shù)感的內(nèi)涵及功能作了表述。《標(biāo)準(zhǔn)》的提法是:“數(shù)感主要是指關(guān)于數(shù)與數(shù)量、數(shù)量關(guān)系、運(yùn)算結(jié)果估計等方面的感悟。建立數(shù)感有助于學(xué)生理解現(xiàn)實生活中數(shù)的意義,理解或表述具體情境中的數(shù)量關(guān)系?!睂?shù)感表述為感悟不僅使這一概念有了較大的包容性,也使得這一概念有了更實在的意義,有利于一線教師的理解和把握。在前期課程實施中,人們對數(shù)感內(nèi)涵的認(rèn)識較多強(qiáng)調(diào)其直覺、感知、潛意識、經(jīng)驗等方面,在教學(xué)中教師也常常有“虛無縹緲”之感,找不到教學(xué)支點。將數(shù)感表述為感悟,揭示了這一概念的兩重屬性:既有“感”,如感知,又有“悟”,如悟性、領(lǐng)悟。感悟是既通過肢體又通過大腦,因此,既有感知的成分又有思維的成分?!稑?biāo)準(zhǔn)》將這種對數(shù)的感悟歸納為三個方面:數(shù)與數(shù)量、數(shù)量關(guān)系、運(yùn)算結(jié)果估計,這主要是基于義務(wù)教育階段數(shù)學(xué)課程內(nèi)容的范圍并根據(jù)學(xué)生的實際所作出的要求,這有利于教師在教學(xué)中更好地把握數(shù)感培養(yǎng)的幾條主線。應(yīng)結(jié)合每一學(xué)段的具體教學(xué)內(nèi)容,

逐步提升和發(fā)展學(xué)生的數(shù)感。比如在二學(xué)段應(yīng)結(jié)合學(xué)生所熟悉的現(xiàn)實素材感受大數(shù)的意義,并能對一些問題進(jìn)行估算;能了解負(fù)數(shù)的意義,用負(fù)數(shù)表示日常生活的問題,建立起對負(fù)數(shù)的數(shù)感。在第三學(xué)段,隨著對數(shù)的認(rèn)識領(lǐng)域的擴(kuò)大以及數(shù)的認(rèn)識經(jīng)驗的積累,可以引導(dǎo)學(xué)生在較復(fù)雜的數(shù)量關(guān)系和運(yùn)算問題中提升數(shù)感,發(fā)展更為良好的數(shù)感品質(zhì)。緊密結(jié)合現(xiàn)實生活

情境和實例,培養(yǎng)學(xué)生的數(shù)感

現(xiàn)實生活情境和實例,與學(xué)生的實際生活經(jīng)驗密切相連,不僅能夠為學(xué)生提供真實自然的數(shù)的感悟環(huán)境,也能讓學(xué)生在數(shù)的認(rèn)知上經(jīng)歷由具體到抽象的過程,逐步發(fā)展學(xué)生關(guān)于數(shù)的思維。反之,學(xué)生數(shù)感的提升也使得他們能用數(shù)字的眼光看周圍世界,正如《標(biāo)準(zhǔn)》所說:“建立數(shù)感有助于學(xué)生理解現(xiàn)實生活中數(shù)的意義,理解或表述具體情境中的數(shù)量關(guān)系。”情境

與數(shù)感

比如,讓學(xué)生通過調(diào)查、討論,弄清楚自己的學(xué)號、地區(qū)郵編號、汽車牌照號、身份證編號的規(guī)律和意義。如下的一個問題更是能讓學(xué)生感到,建立良好的數(shù)感,對數(shù)字信息作出合理解釋與推斷的重要:火車票上車次號有兩個含義,一是數(shù)字越小表示車速越快,1~98次為特快車,101~198次為直快車,301~398次為普快車,401~598次為普客車;二是單數(shù)表示從北京開出,雙數(shù)表示開往北京,現(xiàn)在有一張車票的車次號為122,它能給你什么信息?讓學(xué)生多經(jīng)歷有關(guān)數(shù)的

活動過程,逐步積累數(shù)感經(jīng)驗

在具體的數(shù)學(xué)活動中,學(xué)生能動腦、動手、動口,多種感官協(xié)調(diào)活動,加之能相互交流,這對強(qiáng)化感知和思維,積累數(shù)感經(jīng)驗非常有益比如有關(guān)數(shù)學(xué)的社會調(diào)查活動、及一些綜合實踐活動比如:交通流量的調(diào)查統(tǒng)計

還可組織學(xué)生針對一周出版的某種報紙討論中間出現(xiàn)了哪些與數(shù)、數(shù)量、運(yùn)算有關(guān)的數(shù)學(xué)問題,分別表述這些問題中關(guān)于數(shù)的意義作用,如何用數(shù)來解決這些具體問題等等。這樣的數(shù)學(xué)活動有利于學(xué)生在相互交流中從多角度去感悟數(shù),豐富自己的數(shù)感經(jīng)驗。核心概念之二:符號意識符號對于數(shù)學(xué)來說是特有的。它既是數(shù)學(xué)的語言,也是數(shù)學(xué)的工具,更體現(xiàn)數(shù)學(xué)的方法。數(shù)學(xué)符號的功能特性是多方面的:它具有抽象性,明確性,可操作性,此外數(shù)學(xué)符號還具有簡略性和通用性等特點。學(xué)生在數(shù)學(xué)學(xué)習(xí)過程中,將無時無刻不與符號打交道,對數(shù)學(xué)符號的語言、工具、方法的功能和上述特性的認(rèn)識事實上構(gòu)成了學(xué)生數(shù)學(xué)學(xué)習(xí)的重要內(nèi)容,學(xué)生掌握數(shù)學(xué)符號、運(yùn)用數(shù)學(xué)符號能力的培養(yǎng)也成為重要的教學(xué)目標(biāo)。(1)何為符號意識?所謂符號就是針對具體事物對象而抽象概括出來的一種簡略的記號或代號。數(shù)字、字母、圖形、關(guān)系式等等構(gòu)成了數(shù)學(xué)的符號系統(tǒng)符號意識(Symbolsense)是學(xué)習(xí)者在感知、認(rèn)識、運(yùn)用數(shù)學(xué)符號方面所作出的一種主動性反應(yīng),它也是一種積極的心理傾向。數(shù)學(xué)符號最本質(zhì)的意義

就在于它是數(shù)學(xué)抽象的結(jié)果比如,在數(shù)與代數(shù)中,數(shù)來源于對數(shù)量本質(zhì)(多與少)的抽象,而數(shù)字就成為能夠以大小排序的符號。與數(shù)的符號表示一樣,關(guān)于數(shù)的運(yùn)算知識也是從生活實踐中加以抽象,逐漸形成法則。這一過程中很重要的一步是使用字母這一符號來表示抽象運(yùn)算,這使得“可以像對‘?dāng)?shù)’那樣對“符號”進(jìn)行運(yùn)算,并且,通過符號運(yùn)算得到的結(jié)果是具有一般性的這表明,數(shù)學(xué)符號不僅是一種表示方式,更是與數(shù)學(xué)概念、命題等具體內(nèi)容相關(guān)的、體現(xiàn)數(shù)學(xué)基本思想的核心概念符號感為何改為符號意識?符號感(SymbolSense)原課標(biāo):“符號感主要表現(xiàn)在:能從具體情境中抽象出數(shù)量關(guān)系和變化規(guī)律,并用符號來表示;理解符號所代表的數(shù)量關(guān)系和變化規(guī)律;會進(jìn)行符號間的轉(zhuǎn)換;能選擇適當(dāng)?shù)某绦蚝头椒ń鉀Q用符號所表達(dá)的問題?!?/p>

雖然英文單詞一樣,但改

動后中文意義有所不同修改稿:“符號意識主要是指能夠理解并且運(yùn)用符號表示數(shù)、數(shù)量關(guān)系和變化規(guī)律;知道使用符號可以進(jìn)行一般性的運(yùn)算和推理。建立符號意識有助于學(xué)生理解符號的使用是數(shù)學(xué)表達(dá)和進(jìn)行數(shù)學(xué)思考的重要形式?!狈柛信c數(shù)感都用“感”,“感”的表述過多符號感主要的不是潛意識、直覺符號感最重要的內(nèi)涵是運(yùn)用符號進(jìn)行數(shù)學(xué)思考和表達(dá),進(jìn)行數(shù)學(xué)活動,這是一個“意識”問題,而不是“感”的問題(2)對符號意識的理解《標(biāo)準(zhǔn)》對符號意識的表述有這樣幾層意思值得我們體會:能夠理解并且運(yùn)用符號表示數(shù)、數(shù)量關(guān)系和變化規(guī)律這個要求有兩層意思:一是能夠理解符號所表示的意義;二是能夠運(yùn)用符號去表示數(shù)學(xué)對象(數(shù)、數(shù)量關(guān)系和變化規(guī)律等)。對數(shù)學(xué)符號不僅要“懂”,還要會“用”。運(yùn)用符號表達(dá)數(shù)學(xué)對象就是“用”符號的重要方面。關(guān)于用符號表達(dá)數(shù)學(xué)對象這里著重指出兩點:一是要注意整個學(xué)習(xí)過程中,學(xué)生用符號表達(dá)數(shù)學(xué)對象是一個由簡單到復(fù)雜,由相對具體到相對抽象的過程。二是數(shù)學(xué)符號的表達(dá)是多樣化的,比如關(guān)系式、表格、圖像等等都是表達(dá)數(shù)量關(guān)系和變化規(guī)律的符號工具,有時,即使是同一數(shù)學(xué)對象也可采用多種符號予以表達(dá)。而多種符號表達(dá)方式之間也是可以轉(zhuǎn)換的。符號表達(dá)上的這些特點值得我們在教學(xué)中關(guān)注。比如這樣一個例題:在下列橫線上填上合適的數(shù)字,字母或圖形,并說明理由。1,1,2;1,1,2;,,;A,A,B;A,A,B;,,;□,□,;□,□,;,,;通過觀察規(guī)律,使一學(xué)段學(xué)生能夠感悟到:對于有規(guī)律的事物,無論是用數(shù)字還是字母或圖形都可以反映相同的規(guī)律,只是表達(dá)形式不同而已。知道使用符號可以進(jìn)行運(yùn)算和推理,得到的結(jié)論具有一般性這一點很重要。從某種意義上說這正是符號意識作為一種“意識”需要強(qiáng)化的。這一要求的核心是基于運(yùn)算和推理的符號“操作”意識。由于運(yùn)算和推理是數(shù)學(xué)活動最重要的基本形式,所以《標(biāo)準(zhǔn)》的這一要求是希望在各學(xué)段學(xué)習(xí)中,都加強(qiáng)學(xué)生在邏輯法則下使用符號進(jìn)行運(yùn)算、推理的訓(xùn)練,這涉及到的類型較多,如對具體問題的符號表示、變量替換、關(guān)系轉(zhuǎn)換、等價推演、模型抽象及模型解決等等。使學(xué)生理解符號的使用是數(shù)學(xué)表

達(dá)和進(jìn)行數(shù)學(xué)思考的重要形式

數(shù)學(xué)表達(dá)實質(zhì)上就是以數(shù)學(xué)符號作為媒介的一種語言表達(dá)。通過培養(yǎng)符號意識,發(fā)展學(xué)生數(shù)學(xué)表達(dá)能力成為當(dāng)今課堂關(guān)注的目標(biāo)。發(fā)展符號意識最重要的是運(yùn)用符號進(jìn)行數(shù)學(xué)思考,我們不妨把這種思考稱為“符號思考”,舉一個簡單的例子:“房間里有4條腿的椅子和三條腿的凳子共16個,如果椅子腿數(shù)和凳子腿數(shù)加起來共有60個,那么有幾個椅子和幾個凳子?”

如果學(xué)生沒有經(jīng)過專門的“雞兔同籠”解題模式的思維訓(xùn)練,他完全可以使用恰當(dāng)?shù)姆栠M(jìn)行數(shù)學(xué)思考,找到解題思路。如可以用表格分析椅子數(shù)的變化引起凳子數(shù)和腿總數(shù)的變化規(guī)律,直接得到答案;也可采用一元一次方程或一元二次方程組的、關(guān)于字母的思考方式來加以解決。核心概念之三:空間觀念

(1)發(fā)展空間觀念的意義空間觀念也是創(chuàng)新精神所需的基本要素,沒有空間觀念和空間想象力,幾乎很難談發(fā)明與創(chuàng)造,因為許許多多的發(fā)明創(chuàng)造都是以實物的形態(tài)呈現(xiàn)的,作為設(shè)計者要先要對自己的創(chuàng)造物進(jìn)行想象,然后可能是模型的構(gòu)建,這里的模型包括圖形和實物,再根據(jù)模型修改設(shè)計,直至最終完善成型。這是一個充滿豐富想象和創(chuàng)造的探求過程,也是人的思維不斷在二維和三維空間之間轉(zhuǎn)換,利用直觀進(jìn)行思考的過程??臻g觀念和空間想象力在這個過程中起著至關(guān)重要的作用。

(2)《標(biāo)準(zhǔn)》中空間

觀念所包含的內(nèi)容《標(biāo)準(zhǔn)》中沒有具體給出空間觀念的內(nèi)涵,而是從是否具有空間觀念的幾個表征出發(fā)對其進(jìn)行描述。《標(biāo)準(zhǔn)》是從四個方面加以刻畫描述的:空間觀念主要是指根據(jù)物體特征抽象出幾何圖形,根據(jù)幾何圖形想象出所描述的實際物體;想象出物體的方位和相互之間的位置關(guān)系;描述圖形的運(yùn)動和變化;依據(jù)語言的描述畫出圖形等。核心概念之四:幾何直觀

——此次新增的核心概念(1)對幾何直觀的認(rèn)識顧名思義,幾何直觀所指有兩點:一是幾何,在這里幾何是指圖形;一是直觀,這里的直觀不僅僅是指直接看到的東西(直接看到的是一個層次),更重要的是依托現(xiàn)在看到的東西、以前看到的東西進(jìn)行思考、想象,綜合起來幾何直觀就是依托、利用圖形進(jìn)行數(shù)學(xué)的思考、想象。它在本質(zhì)上是一種通過圖形所展開的想象能力。希爾伯特(Hilbert)在其名著《直觀幾何》一書中所談到的,圖形可以幫助我們發(fā)現(xiàn)、描述研究的問題;可以幫助我們尋求解決問題的思路;可以幫助我們理解和記憶得到的結(jié)果。幾何直觀在研究、學(xué)習(xí)數(shù)學(xué)中的價值由此可見一般。(2)《標(biāo)準(zhǔn)》中幾何直觀的含義

《標(biāo)準(zhǔn)》指出:“幾何直觀是指利用圖形描述和分析問題。借助幾何直觀可以把復(fù)雜的數(shù)學(xué)問題變得簡明、形象,有助于探索解決問題的思路,預(yù)測結(jié)果。幾何直觀可以幫助學(xué)生直觀地理解數(shù)學(xué),在整個數(shù)學(xué)學(xué)習(xí)過程中都發(fā)揮著重要作用。”(3)幾何直觀的培養(yǎng)使學(xué)生養(yǎng)成畫圖習(xí)慣,鼓勵用圖形表達(dá)問題可以通過多種途徑和方式使學(xué)生真正體會到畫圖對理解概念、尋求解題思路上帶來的便利。在教學(xué)中應(yīng)有這樣的導(dǎo)向:能畫圖時盡量畫,其實質(zhì)是將相對抽象的思考對象“圖形化”,盡量把問題、計算、證明等數(shù)學(xué)的過程變得直觀重視變換——讓圖形動起來

幾何變換或圖形的運(yùn)動既是學(xué)習(xí)的對象,也是認(rèn)識數(shù)學(xué)的思想和方法。在數(shù)學(xué)中,我們接觸的最基本的圖形都是對稱圖形,例如圓、正多邊形、長方體、長方形、菱形、平行四邊形等;另一方面,在認(rèn)識、學(xué)習(xí)、研究非對稱圖形時,又往往是運(yùn)用這些對稱圖形為工具的。變換又可以看作運(yùn)動,讓圖形動起來是指再認(rèn)識這些圖形時,在頭腦中讓圖形動起來,例如,平行四邊形是一個中心對稱圖形,可以把它看作一個剛體,通過圍繞中心(兩條對角線的交點)旋轉(zhuǎn)180度,去認(rèn)識、理解、記憶平行四邊形的其他性質(zhì)。充分地利用變換去認(rèn)識、理解幾何圖形是建立幾何直觀的好辦法。

學(xué)會從“數(shù)”與“形”兩個角度認(rèn)識數(shù)學(xué)數(shù)形結(jié)合首先是對知識、技能的貫通式認(rèn)識和理解。以后逐漸發(fā)展成一種對數(shù)與形之間的化歸與轉(zhuǎn)化的意識,這種對數(shù)學(xué)的認(rèn)識和運(yùn)用的能力,應(yīng)該是形成正確的數(shù)學(xué)態(tài)度所必需要求的。

例如,若每兩人握一次手,則3個人共握幾次手,4個人共握幾次手……,

n個人共握幾次手?用歸納的方法探索規(guī)律,如下表:

人數(shù)握手次數(shù)規(guī)律

211331+2461+2+3………n1+2+3+…+(n-1)A1A2A3AN掌握、運(yùn)用一些基本圖形解決問題把讓學(xué)生掌握一些重要的圖形作為教學(xué)任務(wù),貫穿在義務(wù)教育階段數(shù)學(xué)教學(xué)、學(xué)習(xí)的始終。例如,除了前面指出的圖形,還有數(shù)軸,方格紙,直角坐標(biāo)系等等。在教學(xué)中要有意識地強(qiáng)化對基本圖形的運(yùn)用,不斷地運(yùn)用這些基本圖形去發(fā)現(xiàn)、描述問題,理解、記憶結(jié)果,這應(yīng)該成為教學(xué)中關(guān)注的目標(biāo)。核心概念之五:數(shù)據(jù)分析觀念

——由統(tǒng)計觀念改為數(shù)據(jù)分析觀念(1)數(shù)據(jù)分析觀念的意義及含義在義務(wù)教育階段,學(xué)生學(xué)習(xí)統(tǒng)計與概率的核心目標(biāo)是發(fā)展“數(shù)據(jù)分析觀念”,這種觀念是需要在與數(shù)據(jù)接觸的過程中培養(yǎng)出來的對數(shù)據(jù)的某種“領(lǐng)悟”、由一組數(shù)據(jù)去作出推測的意識、以及對于其獨特的思維方法和應(yīng)用價值的體會和認(rèn)識。了解在現(xiàn)實生活中有許多問題應(yīng)當(dāng)先做調(diào)查研究,收集數(shù)據(jù),通過分析做出判斷,體會數(shù)據(jù)中蘊(yùn)涵著信息;了解對于同樣的數(shù)據(jù)可以有多種分析的方法,需要根據(jù)問題的背景選擇合適的方法;通過數(shù)據(jù)分析體驗隨機(jī)性,一方面對于同樣的事情每次收集到的數(shù)據(jù)可能不同,另一方面只要有足夠的數(shù)據(jù)就可能從中發(fā)現(xiàn)規(guī)律,數(shù)據(jù)分析是統(tǒng)計的核心數(shù)據(jù)分析觀念包括:(2)對數(shù)據(jù)分析觀念要求的分析

在上述表述中,點明了兩層意思:第一,統(tǒng)計的核心是數(shù)據(jù)分析。數(shù)據(jù)是信息的載體,而統(tǒng)計學(xué)就是通過這些載體來提取信息進(jìn)行分析的科學(xué)和藝術(shù)。第二,點明了數(shù)據(jù)分析觀念的三個重要方面的要求:體會數(shù)據(jù)中蘊(yùn)涵著信息;根據(jù)問題的背景選擇合適的方法;通過數(shù)據(jù)分析體驗隨機(jī)性。這三個方面也正體現(xiàn)了統(tǒng)計與概率獨特的思維方法。了解對于同樣的數(shù)據(jù)可以有多種分析的方法,需要根據(jù)問題的背景選擇合適的方法”《標(biāo)準(zhǔn)》中對于案例38的說明:“條形統(tǒng)計圖有利于直觀了解不同高度段的學(xué)生數(shù)及其差異;扇形統(tǒng)計圖有利于直觀了解不同高度段的學(xué)生占全班學(xué)生的比例及其差異;折線統(tǒng)計圖有利于直觀了解幾年來學(xué)生身高變化的情況,預(yù)測未來身高變化趨勢”,因此需要我們根據(jù)問題的背景選擇合適的統(tǒng)計圖。總之,統(tǒng)計學(xué)對結(jié)果的判斷標(biāo)準(zhǔn)是‘好壞’”,而不是“對錯”。例38對全班同學(xué)身高的數(shù)據(jù)進(jìn)行整理和分析(2學(xué)段)通過數(shù)據(jù)分析體驗隨機(jī)性數(shù)據(jù)的隨機(jī)主要有兩層涵義:一方面對于同樣的事情每次收集到的數(shù)據(jù)可能會是不同的;另一方面只要有足夠的數(shù)據(jù)就可能從中發(fā)現(xiàn)規(guī)律。舉一個《標(biāo)準(zhǔn)》中的例子(例40):袋中裝有若干個紅球和白球,一方面,每次摸出的球的顏色可能是不一樣的,事先無法確定;另一方面,有放回重復(fù)摸多次(摸完后將球放回袋中,搖晃均勻后再摸),從摸到的球的顏色的數(shù)據(jù)中就能發(fā)現(xiàn)一些規(guī)律,比如紅球多還是白球多、紅球和白球的比例等。例.利用樹葉的特征對樹木分類

(1)收集三種不同樹的樹葉,每種樹葉的數(shù)量相同,比如每種樹選10片樹葉。(2)分類測量每種樹葉子的長和寬,列表記錄所得到的數(shù)據(jù)。(3)分別計算出樹葉子的長寬比,估計每種樹樹葉的長寬比。(4)驗證估計的結(jié)果。[說明]我們可以抓住樹的某些特征對樹進(jìn)行分類,本例是利用樹葉的數(shù)據(jù)特征來對樹進(jìn)行分類。

這一學(xué)習(xí)活動有利于培養(yǎng)學(xué)生的數(shù)據(jù)分析意識,體會有許多事情,通過數(shù)據(jù)分析可以抓住本質(zhì)。知道數(shù)據(jù)不僅僅是別人提供的,還可以自己收集;對于同一種樹,葉子長與寬的比也可能是不一樣的,進(jìn)一步感受數(shù)據(jù)的隨機(jī)性;體會只要有足夠的數(shù)據(jù),就能夠分析出一些規(guī)律性的結(jié)論。教學(xué)中可以作如下設(shè)計:(1)建議采用小組活動的形式,學(xué)生通過合作交流可以獲得較多的數(shù)據(jù)和信息。(2)為了使分析的結(jié)果更加明顯,最好選擇樹葉區(qū)別較大的三種(或者更多)樹、而每種樹選擇的樹葉的大小要接近,即區(qū)別要小一些。(3)“估計每種樹樹葉的長寬比”的方法可以是多樣的,比如,對于每種樹的10片樹葉都測量了長和寬以后,可以用10個比值的眾數(shù),也可以用10個比值的中位數(shù);還可以把長和寬各自相加后,取和的比值,這是10個比值的平均數(shù)(教師可以思考:為什么不用通常求平均數(shù)的方法計算比值的平均數(shù))。針對這個問題,用平均數(shù)是比較合適的。(4)取一片新的樹葉,通過這片樹葉的長寬之比、參照(3)的估計結(jié)果,來判斷這片樹葉屬于哪種樹。學(xué)生會發(fā)現(xiàn),即使是同一棵樹,葉子長與寬的比值恰好等于估計值的可能性也很小,這表現(xiàn)了數(shù)據(jù)的隨機(jī)性??梢赃M(jìn)一步啟發(fā)學(xué)生考慮一個合理的方案:只要比值大概等于估計值,就可以認(rèn)為是同一種樹,也就是說,需要構(gòu)造一個以估計值為中心的數(shù)值區(qū)間,當(dāng)新取的樹葉的長寬比值屬于這個區(qū)間時就認(rèn)為屬于這個樹種。如何合理地構(gòu)造這個數(shù)值區(qū)間是重要的,區(qū)間太短則可能拒絕同類樹種,區(qū)間太長則判斷的精度就要差。(可引導(dǎo)學(xué)生探索方法)這個問題可以舉一反三。核心概念之六:運(yùn)算能力

——此次增加的核心概念

運(yùn)算是數(shù)學(xué)的重要內(nèi)容,在義務(wù)教育階段的數(shù)學(xué)課程的各個學(xué)段中,運(yùn)算都占有很大的比重。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要花費較多的時間和精力,學(xué)習(xí)和掌握關(guān)于各種運(yùn)算的知識及技能,并發(fā)展運(yùn)算能力。(1)標(biāo)準(zhǔn)對運(yùn)算能力的要求《標(biāo)準(zhǔn)》指出:運(yùn)算能力主要是指能夠根據(jù)法則和運(yùn)算律正確地進(jìn)行運(yùn)算的能力。培養(yǎng)運(yùn)算能力有助于學(xué)生理解運(yùn)算的算理,尋求合理簡潔的運(yùn)算途徑解決問題。(2)對運(yùn)算能力的認(rèn)識運(yùn)算的正確、靈活、合理和簡捷是運(yùn)算能力的主要特征。運(yùn)算能力并非一種單一的、孤立的數(shù)學(xué)能力,而是運(yùn)算技能與邏輯思維等的有機(jī)整合。在實施運(yùn)算分析和解決問題的過程中,要力求做到善于分析運(yùn)算條件,探究運(yùn)算方向,選擇運(yùn)算方法,設(shè)計運(yùn)算程序,使運(yùn)算符合算理,合理簡捷。換言之,運(yùn)算能力不僅是一種數(shù)學(xué)的操作能力,更是一種數(shù)學(xué)的思維能力。核心概念之七:推理能力

(1)推理能力的含義推理在數(shù)學(xué)中具有重要的地位。誠如《標(biāo)準(zhǔn)》所指出的:“推理是數(shù)學(xué)的基本思維方式,也是人們學(xué)習(xí)和生活中經(jīng)常使用的思維方式”數(shù)學(xué)推理反映的是一種基本的數(shù)學(xué)思想,也是一種主要的數(shù)學(xué)方法。它與數(shù)學(xué)證明緊密關(guān)聯(lián),數(shù)學(xué)推理與證明共同構(gòu)成了數(shù)學(xué)的最重要的基礎(chǔ)。。學(xué)習(xí)數(shù)學(xué)就是要學(xué)習(xí)推理。具有一定的推理能力是培養(yǎng)學(xué)生數(shù)學(xué)素養(yǎng)的重要內(nèi)容,也是數(shù)學(xué)課程和課堂教學(xué)的重要目標(biāo)。推理能力的發(fā)展應(yīng)貫穿于整個數(shù)學(xué)學(xué)習(xí)過程中……推理一般包括合情推理和演繹推理,合情推理是從已有的事實出發(fā),憑借經(jīng)驗和直覺,通過歸納和類比等推斷某些結(jié)果;演繹推理是從已有的事實(包括定義、公理、定理等)和確定的規(guī)則(包括運(yùn)算的定義、法則、順序等)出發(fā),按照邏輯推理的法則證明和計算。在解決問題的過程中,兩種推理功能不同,相輔相成:合情推理用于探索思路,發(fā)現(xiàn)結(jié)論;演繹推理用于證明結(jié)論。(2)推理能力的培養(yǎng)

推理能力的發(fā)展應(yīng)貫穿在整個數(shù)學(xué)的學(xué)習(xí)過程中這里的“貫穿整個數(shù)學(xué)學(xué)習(xí)過程”應(yīng)該有這樣幾層含義:其一,它應(yīng)貫穿于整個數(shù)學(xué)課程的各個學(xué)習(xí)內(nèi)容,其二,它應(yīng)貫穿于數(shù)學(xué)課堂教學(xué)的各種活動過程其三,它應(yīng)貫穿于整個數(shù)學(xué)學(xué)習(xí)的環(huán)節(jié)也應(yīng)貫穿于三個學(xué)段,合理安排,循序漸進(jìn),協(xié)調(diào)發(fā)展通過多樣化的活動,培養(yǎng)學(xué)生的推理能力反思傳統(tǒng)教學(xué),對學(xué)生推理能力的培養(yǎng)往往被認(rèn)為就是加強(qiáng)邏輯證明的訓(xùn)練,主要的形式就是通過習(xí)題演練以掌握更多的證明技巧。顯然,這樣的認(rèn)識是帶有局限性的。《標(biāo)準(zhǔn)》強(qiáng)調(diào)通過多樣化的活動來培養(yǎng)學(xué)生的推理能力。如《標(biāo)準(zhǔn)》提出:“在參與觀察、實驗、猜想、證明、綜合實踐等數(shù)學(xué)活動中,發(fā)展合情推理和演繹推理能力,

”(總目標(biāo)),“體會通過合情推理探索數(shù)學(xué)結(jié)論,運(yùn)用演繹推理加以證明的過程,在多樣化形式的數(shù)學(xué)活動中,發(fā)展合情推理與演繹推理的能力”(三學(xué)段)使學(xué)生多經(jīng)歷

“猜想——證明”的問題探索過程

在“猜想——證明”的問題探索過程中,學(xué)生能親身經(jīng)歷用合情推理發(fā)現(xiàn)結(jié)論、用演繹推理證明結(jié)論的完整推理過程,在過程中感悟數(shù)學(xué)基本思想,積累數(shù)學(xué)活動經(jīng)驗,這對于學(xué)生數(shù)學(xué)素養(yǎng)的提升極為有利。教師要善于對素材進(jìn)行此類加工,引導(dǎo)學(xué)生多經(jīng)歷這樣的活動。核心概念之八:模型思想模型思想是此次新增的核心概念。盡管原標(biāo)準(zhǔn)在“教學(xué)建議”中曾提到“建立模型”一詞,但數(shù)學(xué)模型、建模等概念并未出現(xiàn)在義務(wù)教育階段課程目標(biāo)及內(nèi)容的文字表述之中。這次隨著“模型思想”的列入,我們會看到關(guān)于數(shù)學(xué)模型的相關(guān)提法會在《標(biāo)準(zhǔn)》的多個部分出現(xiàn)。特別的,模型思想作為一種基本的數(shù)學(xué)思想更是會與目標(biāo)、內(nèi)容緊密關(guān)聯(lián)。作為第一線教師應(yīng)對《標(biāo)準(zhǔn)》中模型思想的含義及要求準(zhǔn)確理解,并把這要求落實于課堂教學(xué)之中。(1)對數(shù)學(xué)建模的認(rèn)識所謂數(shù)學(xué)模型,就是根據(jù)特定的研究目的,采用形式化的數(shù)學(xué)語言,去抽象地,概括地表征所研究對象的主要特征、關(guān)系所形成的一種數(shù)學(xué)結(jié)構(gòu)。在義務(wù)教育階段數(shù)學(xué)中,用字母、數(shù)字及其他數(shù)學(xué)符號建立起來的代數(shù)式、關(guān)系式、方程、函數(shù)、不等式,及各種圖表、圖形等都是數(shù)學(xué)模型。廣義與狹義?這種結(jié)構(gòu)有兩個主要特點:其一,它是經(jīng)過抽象舍去對象的一些非本質(zhì)屬性以后所形成的一種純數(shù)學(xué)關(guān)系結(jié)構(gòu);其二,這種結(jié)構(gòu)是借助數(shù)學(xué)符號來表示,并能進(jìn)行數(shù)學(xué)推演的結(jié)構(gòu)。對數(shù)學(xué)模型可以從兩個層次上去理解:廣義的理解是把那些凡是針對客觀對象加以一級或多級抽象所得到的形式結(jié)構(gòu)都視為客觀對象的模型;狹義的理解是指針對特定現(xiàn)實問題或具體實物對象進(jìn)行數(shù)學(xué)抽象所得到的數(shù)學(xué)模型。在中小學(xué)階段數(shù)學(xué)中的數(shù)學(xué)模型一般指后者數(shù)學(xué)建模就是通過建立模型的方法來求得問題解決的數(shù)學(xué)活動過程。這一過程的步驟可用如下框圖來體現(xiàn):觀察實際情境發(fā)現(xiàn)提出問題抽象成數(shù)學(xué)模型得到數(shù)學(xué)結(jié)果可用結(jié)果檢驗合乎實際不合乎實際修改

這些步驟反映的是一個相對嚴(yán)格的數(shù)學(xué)建模過程,義務(wù)教育階段特別是小學(xué)的數(shù)學(xué)建模視具體課程內(nèi)容要求,不一定完全經(jīng)歷所有的環(huán)節(jié),這里有一個逐步提高的過程。

(2)《標(biāo)準(zhǔn)》中模型思想的含義及要求模型思想的建立是學(xué)生體會和理解數(shù)學(xué)與外部世界聯(lián)系的基本途徑。建立和求解模型的過程包括:從現(xiàn)實生活或具體情境中抽象出數(shù)學(xué)問題,用數(shù)學(xué)符號建立方程、不等式、函數(shù)等表示數(shù)學(xué)問題中的數(shù)量關(guān)系和變化規(guī)律,求出結(jié)果、并討論結(jié)果的意義。使學(xué)生體會和理解數(shù)學(xué)與外部世界的聯(lián)系是這一核心概念的本質(zhì)要求《標(biāo)準(zhǔn)》從義務(wù)教育數(shù)學(xué)課程的實際情況出發(fā),將這一過程進(jìn)一步簡化為這樣三個環(huán)節(jié):首先是“從現(xiàn)實生活或具體情境中抽象數(shù)學(xué)問題”。這說明發(fā)現(xiàn)和提出問題是數(shù)學(xué)建模的起點。然后“用數(shù)學(xué)符號建立方程、不等式、函數(shù)等表示數(shù)學(xué)問題中的數(shù)量關(guān)系和變化規(guī)律”。在這一步中,學(xué)生要通過觀察、分析、抽象、概括、選擇、判斷等等數(shù)學(xué)活動,完成模式抽象,得到模型。這是建模最重要的一個環(huán)節(jié)。最后,通過模型去求出結(jié)果,并用此結(jié)果去解釋、討論它在現(xiàn)實問題中的意義。顯然,數(shù)學(xué)建模過程可以使學(xué)生在多方面得到培養(yǎng)而不只是知識、技能,更有思想、方法,也有經(jīng)驗積累,其情感態(tài)度(如興趣、自信心、科學(xué)態(tài)度等)也會得到培養(yǎng)。(3)模型思想的培養(yǎng)

模型思想需要教師在教學(xué)中逐步滲透和引導(dǎo)學(xué)生不斷感悟比如在一學(xué)段,可以引導(dǎo)學(xué)生經(jīng)歷從現(xiàn)實情境中抽象出數(shù)、簡單幾何體和平面圖形的過程和簡單數(shù)據(jù)收集、整理的過程,使學(xué)生能學(xué)會用適當(dāng)?shù)姆杹肀硎具@些現(xiàn)實情境中的簡單現(xiàn)象,提出一些力所能及的數(shù)學(xué)問題;在二學(xué)段,通過一些具體問題,引導(dǎo)學(xué)生通過觀察分析抽象出更為一般的模式表達(dá),如用字母表示有關(guān)的運(yùn)算律和運(yùn)算性質(zhì),總結(jié)出路程、速度、時間,單價、數(shù)量、總價等關(guān)系式;在三學(xué)段,主要是結(jié)合相關(guān)概念學(xué)習(xí),引導(dǎo)學(xué)生運(yùn)用函數(shù)、不等式、方程、方程組、幾何圖形、統(tǒng)計表格等分析表達(dá)現(xiàn)實問題,解決現(xiàn)實問題??傊P退枷氲臐B透是多方位的。模型思想的感悟應(yīng)該蘊(yùn)含于日常教學(xué)之中,使學(xué)生經(jīng)歷“問題情境——建立模型

——求解驗證”的數(shù)學(xué)活動過程

“問題情境——建立模型——求解驗證”的數(shù)學(xué)活動過程體現(xiàn)了《標(biāo)準(zhǔn)》中模型思想的基本要求,也有利于學(xué)生在過程中理解、掌握有關(guān)知識、技能,積累數(shù)學(xué)活動經(jīng)驗,感悟模型思想的本質(zhì)。這一過程更有利于學(xué)生去發(fā)現(xiàn)、提出、分析、解決問題,培養(yǎng)創(chuàng)新意識。[案例]“一元一次方程”(北師大版7年級上冊)

在該章學(xué)習(xí)中,教材設(shè)計了如下多樣化的情境問題:

“你今年幾歲了”“日歷中的方程”“我變胖了”“打折銷售”“希望工程義演”“能趕上火車嗎”“教育儲蓄”

通過上述問題引入方程概念、學(xué)習(xí)方程解法、學(xué)會運(yùn)用方程解決實際問題。

教材進(jìn)一步以“議一議”的學(xué)習(xí)形式,引導(dǎo)學(xué)生

進(jìn)行拓展與反思,總結(jié)出如下一般步驟:實際問題數(shù)學(xué)問題

已知量、未知量、等量關(guān)系解釋

解的合理性

方程的解方程不合理合理驗證抽象分析列出求出模型思想數(shù)學(xué)化一個教材的實例通過數(shù)學(xué)建模改善學(xué)習(xí)方式數(shù)學(xué)建模不同于單純的數(shù)學(xué)解題,它是一個綜合性的過程。這一過程所具有的問題性、活動性、過程性、搜索性等特點給學(xué)生數(shù)學(xué)學(xué)習(xí)方式的改善帶來了很大的空間。小課題學(xué)習(xí)方式。讓學(xué)生自主確定數(shù)學(xué)建模課題,設(shè)定課題研究計劃,完成以后最后提交課題研究報告?;跀?shù)學(xué)建模的小課題研究針對不同的年齡段應(yīng)該有不同的層次和不同的水平,但不管何種層次和水平,關(guān)鍵是要引導(dǎo)學(xué)生根據(jù)自己的生活經(jīng)驗和對現(xiàn)實情境的觀察,提出研究課題。通過數(shù)學(xué)建模改善學(xué)習(xí)方式協(xié)作式學(xué)習(xí)方式。在數(shù)學(xué)建模中可以小組為單位在組內(nèi)進(jìn)行合理分工,協(xié)同作戰(zhàn),培養(yǎng)學(xué)生的合作交流能力。開放式學(xué)習(xí)方式。這里的開放是多種意義的,如打破課內(nèi)課外界限,走入社會,進(jìn)行數(shù)學(xué)調(diào)查;充分利用網(wǎng)絡(luò)資源,收集建模有用信息;鼓勵對統(tǒng)一問題的不同建模方式等等。信息技術(shù)環(huán)境中的學(xué)習(xí)方式。充分利用計算機(jī)的計算功能、圖形實現(xiàn)功能、特有軟件包的應(yīng)用功能等,尋求建模途徑,提高數(shù)學(xué)建模的有效性。核心概念之九:應(yīng)用意識應(yīng)用意識有兩個方面的含義,一方面有意識利用數(shù)學(xué)的概念、原理和方法解釋現(xiàn)實世界中的現(xiàn)象,解決現(xiàn)實世界中的問題;另一方面,認(rèn)識到現(xiàn)實生活中蘊(yùn)涵著大量與數(shù)量和圖形有關(guān)的問題,這些問題可以抽象成數(shù)學(xué)問題,用數(shù)學(xué)的方法予以解決。核心概念之十:創(chuàng)新意識創(chuàng)新意識的培養(yǎng)是現(xiàn)代數(shù)學(xué)教育的基本任務(wù),應(yīng)體現(xiàn)在數(shù)學(xué)教與學(xué)的過程之中。學(xué)生自己發(fā)現(xiàn)和提出問題是創(chuàng)新的基礎(chǔ);獨立思考、學(xué)會思考是創(chuàng)新的核心;歸納概括得到猜想和規(guī)律,并加以驗證,是創(chuàng)新的重要方法。創(chuàng)新意識的培養(yǎng)應(yīng)該從義務(wù)教育階段做起,貫穿數(shù)學(xué)教育的始終。3.關(guān)于課程目標(biāo)的修改

在目標(biāo)的結(jié)構(gòu)上仍按:總體目標(biāo)總體表述知識技能數(shù)學(xué)思考問題解決情感態(tài)度學(xué)段目標(biāo)第一學(xué)段第二學(xué)段第三學(xué)段(1)目標(biāo)上有哪些變化?

在總體目標(biāo)中突出了“培養(yǎng)學(xué)生創(chuàng)新精神和實踐能力”的改革方向和目標(biāo)價值取向。

變化之一:明確提出四基,即“基礎(chǔ)知識、基本技能、基本活動經(jīng)驗、基本思想”變化之二:針對創(chuàng)新精神和實踐能力的培養(yǎng),明確提出“發(fā)現(xiàn)問題和提出問題的能力、分析問題和解決問題的能力”變化之三:針對了解知識的來龍去脈,明確提出“體會數(shù)學(xué)知識之間、數(shù)學(xué)與其他學(xué)科之間、數(shù)學(xué)與生活之間的聯(lián)系”變化之四:對于情感態(tài)度的培養(yǎng),進(jìn)一步明確“了解數(shù)學(xué)的價值,提高學(xué)習(xí)數(shù)學(xué)的興趣,增強(qiáng)學(xué)好數(shù)學(xué)的信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣”變化之五:針對學(xué)科精神的培養(yǎng),明確提出“具有初步的創(chuàng)新意識和科學(xué)態(tài)度”數(shù)學(xué)課程總目標(biāo)有那些新變化?“解決問題”改為“問題解決”——目標(biāo)具體從“知識技能”“數(shù)學(xué)思考”“問題解決”“情感態(tài)度”四個方面闡述——學(xué)段目標(biāo)的表述方式有所改變(2)對幾個新目標(biāo)點的分析目標(biāo)點一:“四基”從“雙基”到“四基”

——對數(shù)學(xué)教學(xué)有何意義?對傳統(tǒng)課程的反思:“雙基”是我國數(shù)學(xué)教學(xué)的優(yōu)勢所在,但它是否就是數(shù)學(xué)課程價值的全部?傳統(tǒng)意義下的“雙基”需要與時俱進(jìn)理解

我在《數(shù)學(xué)教育的價值》一書中系統(tǒng)闡述了數(shù)學(xué)課程應(yīng)有的價值觀。對傳統(tǒng)課程的反思:在“雙基”與能力或“雙基”與數(shù)學(xué)素養(yǎng)之間似乎還缺少一些什么東西?數(shù)學(xué)素養(yǎng)最核心的要素有哪些呢?如何才能形成數(shù)學(xué)智慧呢?如何能從課程目標(biāo)上支撐創(chuàng)新精神和實踐能力的培養(yǎng)呢?一個觀點:“創(chuàng)新能力的基礎(chǔ)依賴于三方面:知識的掌握、思維的訓(xùn)練、經(jīng)驗的積累,三方面同等重要.關(guān)于“知識的掌握”,我國的中小學(xué)數(shù)學(xué)教育是沒有問題的;關(guān)于“經(jīng)驗的積累”,大概還差得很多;關(guān)于“思維的訓(xùn)練”,我們做得也不夠,只能打五十分.那么為了創(chuàng)新型國家的建立我們現(xiàn)在的教育只做了一半的工作.我們沒有更多地在基礎(chǔ)教育階段教孩子如何去創(chuàng)新,幫他們從小的事情、小的發(fā)現(xiàn)開始積累經(jīng)驗,沒有這樣的意識。”

(史寧中2007年第46卷第5期數(shù)學(xué)通報)

)何為數(shù)學(xué)基本思想?德國諾貝爾獎獲得者、物理學(xué)家馮.勞厄:

“教育無非是一切已學(xué)過的東西都忘掉時所剩下的東西”數(shù)學(xué)課堂教學(xué)應(yīng)該是有思想的教學(xué)!有了思想才有了課堂的生命什么是數(shù)學(xué)學(xué)習(xí)中最本質(zhì)的東西?波利亞(美)一貫強(qiáng)調(diào)把“有益的思考方式,應(yīng)有的思維習(xí)慣”放在教學(xué)的首位。閔山國藏(日本)指出,學(xué)生在畢業(yè)之后不久,數(shù)學(xué)知識就很快忘掉了,“然而,不管他們從事什么業(yè)務(wù)工作,唯有深深地銘刻于頭腦中的數(shù)學(xué)的精神、思維方法、推理方法和著眼點(如果培養(yǎng)了這種素質(zhì)的話),在隨時發(fā)生作用,使他們受益終身?!?/p>

可以討論的觀點:“數(shù)學(xué)發(fā)展所依賴的思想在本質(zhì)上有三個:抽象、推理、模型,……通過抽象,在現(xiàn)實生活中得到數(shù)學(xué)的概念和運(yùn)算法則,通過推理得到數(shù)學(xué)的發(fā)展,然后通過模型建立數(shù)學(xué)與外部世界的聯(lián)系”(史寧中,《數(shù)學(xué)思想概論》第一輯,東北師范大學(xué)出版社,2008.6,第一頁)。從數(shù)學(xué)產(chǎn)生、數(shù)學(xué)內(nèi)部發(fā)展、數(shù)學(xué)外部關(guān)聯(lián)三個維度上概括了對數(shù)學(xué)發(fā)展影響最大的三個重要思想。何為數(shù)學(xué)基本思想?數(shù)學(xué)基本思想是指對數(shù)學(xué)及其對象、數(shù)學(xué)概念和數(shù)學(xué)結(jié)構(gòu)以及數(shù)學(xué)方法的本質(zhì)性認(rèn)識數(shù)學(xué)思想蘊(yùn)涵在數(shù)學(xué)知識形成、發(fā)展和應(yīng)用的過程中;它制約著學(xué)科發(fā)展的主線和邏輯架構(gòu);是數(shù)學(xué)知識和方法在更高層次上的抽象與概括。如歸納、演繹、抽象、轉(zhuǎn)化、分類、模型、結(jié)構(gòu)、數(shù)形結(jié)合、隨機(jī)…等。三個常用的概念:

數(shù)學(xué)思想數(shù)學(xué)方法數(shù)學(xué)思想方法注意教材中蘊(yùn)含的數(shù)學(xué)基本思想在課程內(nèi)容和教材中,數(shù)學(xué)基本思想其實是很豐富的,這些思想常常處于潛形態(tài),教師要成為有心人

如何使數(shù)學(xué)思想從潛形態(tài)轉(zhuǎn)變?yōu)轱@形態(tài)呢?

※分類

※化歸

※歸納

經(jīng)驗與思想?R.柯朗H.羅賓:

“只有靠了數(shù)學(xué)自身的經(jīng)驗,才能把握數(shù)學(xué)思想是什么?”

什么是數(shù)學(xué)活動經(jīng)驗?

黃翔《獲得數(shù)學(xué)活動經(jīng)驗應(yīng)成為

數(shù)學(xué)課堂教學(xué)關(guān)注的目標(biāo)》

——《課程.教材.教法》2008.1期

數(shù)學(xué)活動經(jīng)驗的基本特征:數(shù)學(xué)活動經(jīng)驗是基于學(xué)習(xí)主體的,它帶有明顯的主體性特征,因此也就具有學(xué)習(xí)者的個性特征,它屬于特定的學(xué)習(xí)者自己。

—主體性數(shù)學(xué)活動經(jīng)驗是學(xué)習(xí)者在學(xué)習(xí)的活動過程中所獲得的,離開了活動過程這一實踐是不會形成有意義的數(shù)學(xué)活動經(jīng)驗的

—實踐(過程)性數(shù)學(xué)活動經(jīng)驗反映的是學(xué)習(xí)者在特定的學(xué)習(xí)環(huán)境中或某一學(xué)習(xí)階段對學(xué)習(xí)對象的一種經(jīng)驗性認(rèn)識,這種經(jīng)驗性認(rèn)識更多的時候是內(nèi)隱的,原生的或直接感受的、非嚴(yán)格理性的,也是可在學(xué)習(xí)過程中可變的。

—發(fā)展性即使是外部條件看來相同,但是對同一對象,每一個學(xué)生仍然可能具有不同的經(jīng)驗

——多樣性數(shù)學(xué)活動經(jīng)驗的類型:直接的活動經(jīng)驗,間接的活動經(jīng)驗,設(shè)計的活動經(jīng)驗和思考的活動經(jīng)驗。直接的活動經(jīng)驗是與學(xué)生日常生活直接聯(lián)系的數(shù)學(xué)活動中所獲得的經(jīng)驗,如購買物品、校園設(shè)計等。而間接的活動經(jīng)驗是學(xué)生在教師創(chuàng)設(shè)的情景、構(gòu)建的模型中所獲得的數(shù)學(xué)經(jīng)驗,如雞兔同籠、順?biāo)兄鄣?。設(shè)計的活動經(jīng)驗是學(xué)生從教師特意設(shè)計的數(shù)學(xué)活動中所獲得的經(jīng)驗,如隨機(jī)摸球、地面拼圖等。思考的活動經(jīng)驗是通過分析、歸納等思考獲得的數(shù)學(xué)經(jīng)驗,如預(yù)測結(jié)果、探究成因等。數(shù)學(xué)活動經(jīng)驗并不僅僅是解題的經(jīng)驗,

更加重要的是在數(shù)學(xué)活動中思考的經(jīng)驗提出數(shù)學(xué)活動經(jīng)驗,還有一個重要目的,就是培養(yǎng)學(xué)生在活動中從數(shù)學(xué)的角度進(jìn)行思考,直觀地、合情地獲得一些結(jié)果,因為進(jìn)行創(chuàng)造,獲得新結(jié)果的主要途徑。數(shù)學(xué)活動經(jīng)驗并不僅僅是解題的經(jīng)驗,更加重要的是思維的經(jīng)驗,是在數(shù)學(xué)活動中思考的經(jīng)驗。創(chuàng)新依賴的是思考,而思維方法是依靠長期活動經(jīng)驗積累獲得的,并不是僅僅依靠接受教師的傳授獲得的。知識經(jīng)驗

思想

智慧學(xué)生形成智慧,不可能僅僅依靠掌握豐富的知識,一定還需要實踐及在實踐中取得經(jīng)驗。數(shù)學(xué)思想也不僅在探索推演中形成,還需要在數(shù)學(xué)活動經(jīng)驗的積累上形成。數(shù)學(xué)基本活動經(jīng)驗:學(xué)習(xí)主體通過親身經(jīng)歷數(shù)學(xué)活動過程所獲得的具有個性特征的經(jīng)驗?!八幕笔强陀^性知識與主觀性體驗的結(jié)合是結(jié)果性知識與過程性活動的結(jié)合

經(jīng)驗,在哲學(xué)上指人們在同客觀事物直接接觸的過程中通過感覺器官獲得的關(guān)于客觀事物的現(xiàn)象和外部聯(lián)系的認(rèn)識。“四基”與數(shù)學(xué)素養(yǎng)掌握數(shù)學(xué)基礎(chǔ)知識訓(xùn)練數(shù)學(xué)基本技能領(lǐng)悟數(shù)學(xué)基本思想積累數(shù)學(xué)基本活動經(jīng)驗

——發(fā)展學(xué)生的數(shù)學(xué)素養(yǎng),培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力目標(biāo)點二:為何要強(qiáng)調(diào)

發(fā)現(xiàn)問題、提出問題?在數(shù)學(xué)中,發(fā)現(xiàn)結(jié)論常常比證明結(jié)論更重要創(chuàng)新性的成果往往始于問題傳統(tǒng)教學(xué)在這方面的不足問題解決的全過程是發(fā)現(xiàn)、提出、分析、解決問題的過程“發(fā)現(xiàn)問題和提出問題”所謂“發(fā)現(xiàn)問題”,是經(jīng)過多方面、多角度的數(shù)學(xué)思維,從表面上看來沒有關(guān)系的一些現(xiàn)象中找到數(shù)量或者空間方面的某些聯(lián)系,或者找到數(shù)量或者空間方面的某些矛盾,并把這些聯(lián)系或者矛盾提煉出來。所謂“提出問題”,是在已經(jīng)發(fā)現(xiàn)問題的基礎(chǔ)上,把找到的聯(lián)系或者矛盾用數(shù)學(xué)語言、數(shù)學(xué)符號集中地以“問題”的形態(tài)表述出來發(fā)現(xiàn)、提出、分析、解決問題是數(shù)學(xué)能力要求我們需要問題驅(qū)動、

分析探究的課堂研究始于問題,同樣,教學(xué)也應(yīng)該始于問題沒有問題的課堂是沒有思想、沒有生命力的課堂

思想是課堂的生命!

問題是課堂的靈魂!我們要通過這樣的課堂

培養(yǎng)學(xué)生的問題意識發(fā)現(xiàn)問題、提出問題是創(chuàng)新的基礎(chǔ)諾貝爾獎金獲得者李政道教授認(rèn)為“我們學(xué)習(xí)知識,目的是要做到‘學(xué)問’。學(xué)習(xí),就是學(xué)習(xí)問問題,學(xué)習(xí)怎樣問問題?!弊鰧W(xué)問與‘學(xué)問’教師要善于將陳述性知識的教材進(jìn)行二度設(shè)計轉(zhuǎn)換成一系列問題序列,使教學(xué)成為問題解決的活動過程教師更要善于創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生自己去發(fā)現(xiàn)、提出、分析解決問題目標(biāo)點三:增強(qiáng)數(shù)學(xué)的聯(lián)系這里說到學(xué)生要體會三個方面的聯(lián)系:數(shù)學(xué)知識之間的聯(lián)系;數(shù)學(xué)與其他學(xué)科之間的聯(lián)系;數(shù)學(xué)與生活之間的聯(lián)系。一堂課可能重點學(xué)習(xí)一個數(shù)學(xué)知識,但是數(shù)學(xué)是一個整體,任何數(shù)學(xué)知識都不是孤立的;一段時間以后,教師應(yīng)該引導(dǎo)學(xué)生把這些知識點聯(lián)接成線,再把這些線進(jìn)一步聯(lián)接成網(wǎng),在自己的頭腦中形成網(wǎng)狀的知識體系。這不僅有利于學(xué)生全面認(rèn)識和準(zhǔn)確理解知識,而且有利于學(xué)生養(yǎng)成良好的習(xí)慣,增強(qiáng)能力,提高數(shù)學(xué)素養(yǎng)。了解知識來龍去脈,

體會數(shù)學(xué)思想方法此外,數(shù)學(xué)學(xué)科與其他學(xué)科是廣泛聯(lián)系著的。許多數(shù)學(xué)知識來源于其它學(xué)科,所有數(shù)學(xué)知識都將應(yīng)用于其它學(xué)科。所以學(xué)生不應(yīng)該孤立地學(xué)習(xí)數(shù)學(xué),而應(yīng)該注意數(shù)學(xué)與其他學(xué)科之間的聯(lián)系。教師也不應(yīng)該封閉地講授數(shù)學(xué),而應(yīng)該經(jīng)常提及其他學(xué)科中的數(shù)學(xué)背景和應(yīng)用。這一輪課程改革,加強(qiáng)了課程內(nèi)容的綜合性,淡化了學(xué)科界限,教材的編寫者和教師都應(yīng)該注意到這一特點目標(biāo)點四:數(shù)學(xué)學(xué)習(xí)習(xí)慣第一次提出“培養(yǎng)學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣”《標(biāo)準(zhǔn)》在“情感與態(tài)度”目標(biāo)中具體指明了其含義:

“養(yǎng)成認(rèn)真勤奮、獨立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣?!笔裁词菍W(xué)習(xí)習(xí)慣?

為什么要提出培養(yǎng)學(xué)習(xí)習(xí)慣?學(xué)習(xí)習(xí)慣指在長期的學(xué)習(xí)中逐漸養(yǎng)成的、較穩(wěn)固的學(xué)習(xí)行為、傾向和習(xí)性。之所以提出數(shù)學(xué)學(xué)習(xí)習(xí)慣,一是因為在長達(dá)九年的義務(wù)教育學(xué)習(xí)階段,一個人在學(xué)習(xí)上的習(xí)慣總是處于不斷的養(yǎng)成過程中,它是與學(xué)習(xí)行為相伴而行的,客觀存在的。

在日常教學(xué)中刻意誘導(dǎo),潛移默化,點滴

積累,通過長時間的磨練,方能習(xí)以為常。

二是良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣具有很強(qiáng)的心理內(nèi)驅(qū)力和學(xué)習(xí)目標(biāo)達(dá)成的慣性力,它有利于學(xué)生通過自主學(xué)習(xí)形成學(xué)習(xí)的正向遷移,提高學(xué)習(xí)效率三是良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣能幫助學(xué)生逐步實現(xiàn)由“學(xué)會”到“會學(xué)”的轉(zhuǎn)變,使學(xué)生今后在適應(yīng)終身學(xué)習(xí)上受益。4.關(guān)于內(nèi)容標(biāo)準(zhǔn)的修改將“內(nèi)容標(biāo)準(zhǔn)”的提法改為“課程內(nèi)容”三學(xué)段關(guān)于課程內(nèi)容的修改課程內(nèi)容中的條目數(shù)量統(tǒng)計(三學(xué)段)

原標(biāo)準(zhǔn)修訂標(biāo)準(zhǔn)差數(shù)與代數(shù)

4852(2)+4(2)圖形與幾何

8389(2)+6(2)統(tǒng)計與概率

1311-2綜合與實踐

43-1合計

148155(4)+7(4)三學(xué)段關(guān)于課程內(nèi)容的修改數(shù)與代數(shù):增加了:知道|a|的含義(這里a表示有理數(shù))知道最簡二次根式和最簡分式的概念能進(jìn)行簡單的整式乘法運(yùn)算中增加了一次式與二次式相乘會用一元二次方程根的判別式判別方程是否有實根和兩個實根是否相等會用待定系系數(shù)法確定一次函數(shù)的解析表達(dá)式數(shù)與代數(shù):增加了:*了解一元二次方程根與系數(shù)關(guān)系、*能解簡單的三元一次方程組、*知道給定不共線三點的坐標(biāo)可以確定一個二次函數(shù)。去掉了:一元一次不等式組的應(yīng)用、有效數(shù)字概念、能對含有較大數(shù)字的信息作出合理的解釋與推斷、以及求絕對值時關(guān)于“絕對值符號內(nèi)不含字母”的限制。

圖形與幾何(三學(xué)段):內(nèi)容結(jié)構(gòu)上略有調(diào)整(圖形的性質(zhì)、圖形的運(yùn)動、圖形與坐標(biāo))(原來是圖形的認(rèn)識、圖形與變換、圖形與坐標(biāo)、圖形與證明)對基本事實規(guī)定更清晰(9條),不再使用“公理”這個詞增強(qiáng)了“圖形與幾何”內(nèi)容的條理性,進(jìn)一步闡述了合情推理和演繹推理的關(guān)系,強(qiáng)調(diào)了幾何證明表述方式的多樣性增加了:會比較線段的大小,理解線段的和、差,以及線段中點的意義了解平行于同一條直線的兩條直線平行會按照邊長的關(guān)系和角的大小對三角形進(jìn)行分類“兩直線平行,同位角相等”不再作為基本事實,而作為定理加以證明增加了平行線性質(zhì)定理的證明、垂徑定理、切線長定理、圓周角定理證明,了解正多邊形的概念及正多邊形與圓的關(guān)系尺規(guī)作圖:過一點作已知直線的垂線;已知一直角邊和斜邊作直角三角形;作三角形的外接圓、內(nèi)切圓;作圓的內(nèi)接正方形和正六邊形*了解平行線性質(zhì)定理的證明*了解相似三角形判定定理的證明*了解平行線性

質(zhì)定理的證明

證明兩直線平行,同位角相等。這個證明可以利用反證法完成。如圖15所示,我們希望證明:如果AB∥CD,那么∠1=∠2。假設(shè)∠1≠∠2,過點O作直線A′B′,使∠EOB′=∠2。根據(jù)“兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行”這個基本事實,可得A′B′∥CD。這樣,過點O就有兩條直線AB,A′B′平行于CD,這與基本事實“過直線外一點有且只有一條直線與這條直線平行”矛盾,說明∠1≠∠2的假設(shè)是不對的,于是有∠1=∠2。基本事實1:兩點確定一條直線。基本事實2:兩點之間線段最短?;臼聦?:過一點有且只有一條直線與這條直線垂直?;臼聦?:兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。基本事實5:過直線外一點有且只有一條直線與這條直線平行?;臼聦?:兩邊及其夾角分別相等的兩個三角形全等?;臼聦?:兩角及其夾邊分別相等的兩個三角形全等?;臼聦?:三邊分別相等的兩個三角形全等?;臼聦?:兩條直線被一組平行線所截,所得的對應(yīng)線段成比例。基本事實9條刪去了:刪去了有關(guān)等腰梯形的內(nèi)容刪去了“探索并了解兩圓位置關(guān)系”降低了關(guān)于視圖與投影的要求,刪去關(guān)于影子、視點、視角、盲區(qū)等內(nèi)容以及對雪花曲線和莫比烏斯帶等圖形的欣賞刪去關(guān)于鏡面對稱的要求統(tǒng)計與概率:

較為系統(tǒng)地整理了“統(tǒng)計與概率”,減少了概率的部分內(nèi)容,使得三個學(xué)段的層次更加清晰,表達(dá)更加準(zhǔn)確。

統(tǒng)計內(nèi)容主要變化如下:

第一學(xué)段與《標(biāo)準(zhǔn)》相比,最大的變化是鼓勵學(xué)生運(yùn)用自己的方式(包括文字、圖畫、表格等)呈現(xiàn)整理數(shù)據(jù)的結(jié)果,不要求學(xué)生學(xué)習(xí)“正規(guī)”的統(tǒng)計圖(一格代表一個單位的條形統(tǒng)計圖)以及平均數(shù)(這些內(nèi)容放在了第二學(xué)段)。第二學(xué)段與《標(biāo)準(zhǔn)》相比,在統(tǒng)計量方面,只要求學(xué)生體會平均數(shù)的意義,不要求學(xué)生學(xué)習(xí)中位數(shù)、眾數(shù)(這些內(nèi)容放在了第三學(xué)段)。

加強(qiáng)體會數(shù)據(jù)的隨機(jī)性這是修改后的一個重要變化。原來,學(xué)生主要是依靠概率來體會隨機(jī)思想的,現(xiàn)在希望學(xué)生通過數(shù)據(jù)來體會隨機(jī)思想。這種變化從“數(shù)據(jù)分析觀念”核心詞的表述可以看出。

第三學(xué)段,刪去極差、頻數(shù)折線圖等內(nèi)容,強(qiáng)調(diào)了對“隨機(jī)”的體會。比如,增加了“通過案例了解簡單隨機(jī)抽樣”、“通過表格、折線圖等,了解隨機(jī)現(xiàn)象的變化趨勢”、增加了能用計算器處理較為復(fù)雜的數(shù)據(jù)、理解平均數(shù)的意義,能計算中位數(shù)、眾數(shù);強(qiáng)調(diào)培養(yǎng)學(xué)生的數(shù)據(jù)分析觀念,加強(qiáng)體會數(shù)據(jù)的隨機(jī)性。概率部分:(1)在第一學(xué)段,去掉了該內(nèi)容的要求;第二學(xué)段,只要求學(xué)生體會隨機(jī)現(xiàn)象,并能對隨機(jī)現(xiàn)象發(fā)生的可能性大小做定性描述。(2)第三學(xué)段,通過列出簡單隨機(jī)現(xiàn)象所有可能的結(jié)果,以及指定事件發(fā)生的所有結(jié)果,來了解隨機(jī)現(xiàn)象發(fā)生的概率。統(tǒng)計與概率未采納的意見:主要是希望在第二學(xué)段保留“中位數(shù)、眾數(shù)”,在第三學(xué)段增加“標(biāo)準(zhǔn)差”??紤]到義務(wù)教育階段統(tǒng)計學(xué)習(xí)核心是發(fā)展數(shù)據(jù)分析觀念,對于分析數(shù)據(jù)特征,關(guān)鍵是讓學(xué)生認(rèn)識到可以刻畫數(shù)據(jù)的集中趨勢和離中程度,而不在于學(xué)習(xí)過多的概念,所以沒有采納此建議。綜合與實踐

——統(tǒng)一了三個學(xué)段的名稱,進(jìn)

一步明確了其目地和內(nèi)涵。“綜合與實踐”是一類以問題為載體,學(xué)生主動參與的學(xué)習(xí)活動,是幫助學(xué)生積累數(shù)學(xué)活動經(jīng)驗、培養(yǎng)學(xué)生應(yīng)用意識與創(chuàng)新意識的重要途徑學(xué)生針對問題情境,綜合所學(xué)知識及生活經(jīng)驗,獨立思考或與他人合作,經(jīng)歷發(fā)現(xiàn)問題和提出問題、分析問題和解決問題的全過程,感悟數(shù)學(xué)各部分內(nèi)容之間、數(shù)學(xué)與生活實際之間、數(shù)學(xué)與其他學(xué)科之間的聯(lián)系,加深對所學(xué)數(shù)學(xué)內(nèi)容的理解實施建議的修改

實施建議的修改。將原來的按三個學(xué)段分別表述改為整體表述,避免不必要的重復(fù),并增強(qiáng)了可操作性。為了使教材編寫者和廣大教師能夠更好地理解《標(biāo)準(zhǔn)》的理念,明確教學(xué)的過程與方法,增補(bǔ)一些具有針對性的案例,并且對于案例的教學(xué)功能等進(jìn)行了比較詳細(xì)地闡述。

術(shù)語解釋與案例術(shù)語解釋與案例匯總作為附錄,統(tǒng)一放在正文后面,使正文更加簡捷清晰;

增加了一些幫助教師理解、澄清困惑的案例。案例數(shù)達(dá)到83個。對大部分案例不僅僅呈現(xiàn)了案例要求本身,而且提出了案例的設(shè)計思路

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論