鞍山市重點中學2024屆高二上數(shù)學期末復習檢測模擬試題含解析_第1頁
鞍山市重點中學2024屆高二上數(shù)學期末復習檢測模擬試題含解析_第2頁
鞍山市重點中學2024屆高二上數(shù)學期末復習檢測模擬試題含解析_第3頁
鞍山市重點中學2024屆高二上數(shù)學期末復習檢測模擬試題含解析_第4頁
鞍山市重點中學2024屆高二上數(shù)學期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

鞍山市重點中學2024屆高二上數(shù)學期末復習檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在R上的函數(shù)滿足,且當時,,則下列結論中正確的是()A. B.C. D.2.已知角的頂點與坐標原點重合,始邊與x軸的非負半軸重合,角終邊上有一點,為銳角,且,則()A. B.C. D.3.若變量x,y滿足約束條件,則目標函數(shù)最大值為()A.1 B.-5C.-2 D.-74.已知、,則直線的傾斜角為()A. B.C. D.5.函數(shù)在區(qū)間(0,e)上的極小值為()A.-e B.1-eC.-1 D.16.如圖所示,在平行六面體中,,,,點是的中點,點是上的點,且,則向量可表示為()A. B.C. D.7.方程表示的曲線為()A.拋物線與一條直線 B.上半拋物線(除去頂點)與一條直線C.拋物線與一條射線 D.上半拋物線(除去頂點)與一條射線8.宋元時期數(shù)學名著《算學啟蒙》中有關于“松竹并生"的問題,松長三尺,竹長一尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.29.若,則()A. B.C. D.10.已知為虛數(shù)單位,復數(shù)是純虛數(shù),則()A. B.4C.3 D.211.已知直線l和兩個不同的平面,,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知拋物線的焦點恰為雙曲線的一個頂點,的另一頂點為,與在第一象限內的交點為,若,則直線的斜率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若向量,,,且向量,,共面,則______14.已知關于的不等式恒成立,則實數(shù)的取值范圍是___________.15.4與16的等比中項是________.16.平行六面體中,底面是邊長為1的正方形,,則對角線的長度為___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知關于的不等式的解集為.(1)求的值;(2)若,求的最小值,并求此時的值.18.(12分)設:實數(shù)滿足,:實數(shù)滿足.(1)若,且為真,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,平面,底面為矩形,,,為的中點,.請用空間向量知識解答下列問題:(1)求線段的長;(2)若為線段上一點,且,求平面與平面夾角的余弦值.20.(12分)如圖1,已知矩形中,,E為上一點且.現(xiàn)將沿著折起,使點D到達點P的位置,且,得到的圖形如圖2.(1)證明為直角三角形;(2)設動點M在線段上,判斷直線與平面位置關系,并說明理由.21.(12分)如圖,中,且,將沿中位線EF折起,使得,連結AB,AC,M為AC的中點.(1)證明:平面ABC;(2)求二面角的余弦值.22.(10分)已知橢圓過點,且離心率,為坐標原點.(1)求橢圓的方程;(2)判斷是否存在直線,使得直線與橢圓相交于兩點,直線與軸相交于點,且滿足,若存在,求出直線的方程;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由可得,利用導數(shù)判斷函數(shù)在上的單調性,由此比較函數(shù)值的大小確定正確選項.【詳解】∵∴,當時,,∴,故∴在內單調遞增,又,∴,所以故選:B2、C【解析】根據(jù)角終邊上有一點,得到,再根據(jù)為銳角,且,求得,再利用兩角差的正切函數(shù)求解.【詳解】因為角終邊上有一點,所以,又因為為銳角,且,所以,所以,故選:C3、A【解析】作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可【詳解】解:由得作出不等式組對應的平面區(qū)域如圖(陰影部分平移直線,由圖象可知當直線,過點時取得最大值,由,解得,所以代入目標函數(shù),得,故選:A4、B【解析】設直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進而可得出直線的傾斜角.【詳解】設直線的傾斜角為,由斜率公式可得,,因此,.故選:B.5、D【解析】求導判斷函數(shù)的單調性即可求解【詳解】的定義域為(0,+∞),,令,得x=1,當x∈(0,1)時,,單調遞減,當x∈(1,e)時,,單調遞增,故在x=1處取得極小值.故選:D.6、D【解析】根據(jù)空間向量加法和減法的運算法則,以及向量的數(shù)乘運算即可求解.【詳解】解:因為在平行六面體中,,,,點是的中點,點是上的點,且,所以,故選:D.7、B【解析】化簡得出或,由此可得出方程表示的曲線.【詳解】由可得或,所以,方程表示的曲線為上半拋物線(除去頂點)與一條直線,故選:B.8、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結構計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當n=1時,a=3,b=2,滿足進行循環(huán)的條件,當n=2時,a,b=4,滿足進行循環(huán)的條件,當n=3時,a,b=8,滿足進行循環(huán)的條件,當n=4時,a,b=16,不滿足進行循環(huán)的條件,故輸出的n值為4,故選:B【點睛】本題考查的知識點是程序框圖,當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答9、D【解析】設,計算出、的值,利用平方差公式可求得結果.【詳解】設由已知可得,,因此,.故選:D.10、C【解析】化簡復數(shù)得,由其為純虛數(shù)求參數(shù)a,進而求的模即可.【詳解】由純虛數(shù),∴,解得:,則,故選:C11、D【解析】根據(jù)直線、平面的位置關系,應用定義法判斷兩個條件之間的充分、必要性.【詳解】當,時,直線l可與平行、相交,故不一定成立,即充分性不成立;當,時,直線l可在平面內,故不一定成立,即必要性不成立.故選:D.12、D【解析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結果.【詳解】因為拋物線的焦點,由題可知;又點在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時,又,故直線的斜率為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由向量共面的性質列出方程組求解即可.【詳解】因為,,共面,所以存在實數(shù)x,y,使得,得,解得∴故答案為:14、【解析】參變分離,可得,設,求導分析單調性,可得,即得解【詳解】因為,所以不等式可化為,設,則,設,由于故在上單調遞增,且,則當時,,單調遞減;當時,,單調遞增,所以,則,即.故答案為:15、±8【解析】解析由G2=4×16=64得G=±8.答案±816、2【解析】利用,兩邊平方后,利用向量數(shù)量積計算公式,計算得.【詳解】對兩邊平方并化簡得,故.【點睛】本小題主要考查空間向量的加法和減法運算,考查空間向量數(shù)量積的表示,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】(1)利用根與系數(shù)的關系,得到等式和不等式,最后求出的值;(2)化簡函數(shù)的解析式,利用基本不等式可以求出函數(shù)的最小值.【小問1詳解】由題意知:,解得【小問2詳解】由(1)知,∴,由對勾函數(shù)單調性知在上單調遞減,∴,即當,函數(shù)的最小值為18、(1)(2)【解析】(1)首先分別求出、為真時參數(shù)的取值范圍,再由為真,取并集即可;(2)首先解一元二次不等式,依題意是的必要不充分條件,則可推出,而不能推出,即可得到不等式組,解得即可;【小問1詳解】解:當時,,即,解得,即為真時,實數(shù)的取值范圍為實數(shù)滿足,即,解得:,即為真時,實數(shù)的取值范圍為因,所以,即;【小問2詳解】解:由,即,所以,因為是的充分不必要條件,所以是的必要不充分條件,則可推出,而不能推出,則,解得;19、(1)(2)【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,由已知可得出,求出的值,即可得解;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】解:平面,,以點為坐標原點,、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,設,則、、、,則,,,則,解得,故.【小問2詳解】解:,則,又、、,所以,,,設為平面的法向量,則,取,可得,顯然,為平面的一個法向量,,因此,平面與平面夾角的余弦值為.20、(1)證明見解析(2)答案不唯一,見解析【解析】(1)利用折疊前后的線段長度及勾股定理求證即可;(2)動點M滿足時和,但時兩種情況,利用線線平行或相交得到結論.【小問1詳解】在折疊前的圖中,如圖:,E為上一點且,則,折疊后,所以,又,所以,所以為直角三角形.小問2詳解】當動點M在線段上,滿足,同樣在線段上取,使得,則,當時,則,又且所以,且,所以四邊形為平行四邊形,所以,又平面,所以此時平面;當時,此時,但,所以四邊形為梯形,所以與必然相交,所以與平面必然相交.綜上,當動點M滿足時,平面;當動點M滿足,但時,與平面相交.21、(1)證明見解析(2)【解析】(1)由勾股定理以及等腰三角形的性質得出,,再由線面垂直的判定證明即可;(2)以點為坐標原點,建立空間直角坐標系,由向量法得出面面角.【小問1詳解】設,則,,平面平面,連接,,,,,即又,平面ABC【小問2詳解】,以點為坐標原點,建立如下圖所示的空間直角坐標系設平面的法向量為,平面的法向量為,令,則同理可得,又二面角為鈍角,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論