版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽合肥市2023-2024學(xué)年數(shù)學(xué)高二上期末經(jīng)典試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的一個焦點(diǎn)到它的一條漸近線的距離為,則()A.5 B.25C. D.2.黃金矩形是寬()與長()的比值為黃金分割比的矩形,如圖所示,把黃金矩形分割成一個正方形和一個黃金矩形,再把矩形分割出正方形.在矩形內(nèi)任取一點(diǎn),則該點(diǎn)取自正方形內(nèi)的概率是A. B.C. D.3.下列數(shù)列中成等差數(shù)列的是()A. B.C. D.4.已知圓,若存在過點(diǎn)的直線與圓C相交于不同兩點(diǎn)A,B,且,則實(shí)數(shù)a的取值范圍是()A. B.C. D.5.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.若任取,則x與y差的絕對值不小于1的概率為()A. B.C. D.7.已知數(shù)列是等比數(shù)列,,數(shù)列是等差數(shù)列,,則的值是()A. B.C. D.8.若拋物線的準(zhǔn)線方程是,則拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.9.已知等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A. B.C. D.10.已知直線:和直線:,拋物線上一動點(diǎn)P到直線和直線的距離之和的最小值是()A. B.C. D.11.一個動圓與定圓相外切,且與直線相切,則動圓圓心的軌跡方程為()A. B.C. D.12.在△ABC中,角A,B,C的對邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,含項(xiàng)的系數(shù)為______(結(jié)果用數(shù)值表示)14.已知兩平行直線與間的距離為3,則C的值是________.15.在等比數(shù)列中,,則______16.已知數(shù)列滿足,,則使得成立的n的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列公差不為0,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式及其前n項(xiàng)和;(2)記,求數(shù)列的前n項(xiàng)和.18.(12分)如圖,正三棱柱的側(cè)棱長為,底面邊長為,點(diǎn)為的中點(diǎn),點(diǎn)在直線上,且(1)證明:面;(2)求平面和平面夾角的余弦值19.(12分)如圖,三棱錐中,兩兩垂直,,且分別為線段的中點(diǎn).(1)若點(diǎn)是線段的中點(diǎn),求證:直線平面;(2)求證:平面平面.20.(12分)已知,以點(diǎn)為圓心圓被軸截得的弦長為.(1)求圓的方程;(2)若過點(diǎn)的直線與圓相切,求直線的方程.21.(12分)已知直線和的交點(diǎn)為(1)若直線經(jīng)過點(diǎn)且與直線平行,求直線的方程;(2)若直線經(jīng)過點(diǎn)且與兩坐標(biāo)軸圍成的三角形的面積為,求直線的方程22.(10分)如圖,在多面體中,和均為等邊三角形,D是的中點(diǎn),.(1)證明:;(2)若,求多面體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由漸近線方程得到,焦點(diǎn)坐標(biāo)為,漸近線方程為:,利用點(diǎn)到直線距離公式即得解【詳解】由題意,雙曲線故焦點(diǎn)坐標(biāo)為,漸近線方程為:焦點(diǎn)到它的一條漸近線的距離為:解得:故選:B2、C【解析】設(shè)矩形的長,寬分別為,所以,把黃金矩形分割成一個正方形和一個黃金矩形,所以,設(shè)矩形的面積為,正方形的面積為,設(shè)在矩形內(nèi)任取一點(diǎn),則該點(diǎn)取自正方形內(nèi)的概率是,則,故本題選C.【詳解】本題考查了幾何概型,考查了運(yùn)算能力.3、C【解析】利用等差數(shù)列定義,逐一驗(yàn)證各個選項(xiàng)即可判斷作答.【詳解】對于A,,A不是等差數(shù)列;對于B,,B不是等差數(shù)列;對于C,,C是等差數(shù)列;對于D,,D不是等差數(shù)列.故選:C4、D【解析】根據(jù)圓的割線定理,結(jié)合圓的性質(zhì)進(jìn)行求解即可.【詳解】圓的圓心坐標(biāo)為:,半徑,由圓的割線定理可知:,顯然有,或,因?yàn)?,所以,于是有,因?yàn)?,所以,而,或,所以,故選:D5、A【解析】根據(jù)直線垂直求出的范圍即可得出.【詳解】由直線垂直可得,解得或1,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.6、C【解析】根據(jù)題意,在平面直角坐標(biāo)系中分析以及與差的絕對值不小于1所對應(yīng)的平面區(qū)域,求出其面積,由幾何概型公式計(jì)算可得答案.【詳解】根據(jù)題意,,其對應(yīng)的區(qū)域?yàn)檎叫危涿娣e,若與差的絕對值不小于1,即,即或,對應(yīng)的區(qū)域?yàn)閳D中的陰影部分,其面積為,故與差的絕對值不小于1的概率.故選:C7、B【解析】根據(jù)等差數(shù)列和等比數(shù)列下標(biāo)和的性質(zhì)即可求解.【詳解】為等比數(shù)列,,,,;為等差數(shù)列,,,,,∴.故選:B.8、D【解析】根據(jù)拋物線的準(zhǔn)線方程,可直接得出拋物線的焦點(diǎn),進(jìn)而利用待定系數(shù)法求得拋物線的標(biāo)準(zhǔn)方程【詳解】準(zhǔn)線方程為,則說明拋物線的焦點(diǎn)在軸的正半軸則其標(biāo)準(zhǔn)方程可設(shè)為:則準(zhǔn)線方程為:解得:則拋物線的標(biāo)準(zhǔn)方程為:故選:D9、B【解析】利用對數(shù)的運(yùn)算性質(zhì),結(jié)合等比數(shù)列的性質(zhì)可求得結(jié)果.【詳解】是各項(xiàng)均為正數(shù)的等比數(shù)列,,,,.故選:B10、A【解析】根據(jù)已知條件,結(jié)合拋物線的定義,可得點(diǎn)P到直線和直線的距離之和,當(dāng)B,P,F(xiàn)三點(diǎn)共線時,最小,再結(jié)合點(diǎn)到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準(zhǔn)線為,焦點(diǎn)為,∴點(diǎn)P到準(zhǔn)線的距離PA等于點(diǎn)P到焦點(diǎn)F的距離PF,即,∴點(diǎn)P到直線和直線的距離之和,∴當(dāng)B,P,F(xiàn)三點(diǎn)共線時,最小,∵,∴,∴點(diǎn)P到直線和直線的距離之和的最小值為故選:A11、D【解析】根據(jù)點(diǎn)到直線的距離與點(diǎn)到點(diǎn)之間距離的關(guān)系化簡即可.【詳解】定圓的圓心,半徑為2,設(shè)動圓圓心P點(diǎn)坐標(biāo)為(x,y),動圓的半徑為r,d為動圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質(zhì)可得,所以,化簡得:∴動圓圓心軌跡方程為故選:D12、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、12【解析】通過二次展開式就可以得到.【詳解】的展開式中含含項(xiàng)的系數(shù)為故答案為:1214、【解析】根據(jù)兩條平行直線之間的距離公式即可得解.【詳解】兩平行直線與間的距離為3,所以,所以故答案為:15、【解析】利用等比數(shù)列性質(zhì)和通項(xiàng)公式可求得,根據(jù)可求得結(jié)果.【詳解】,又,,.故答案為:.16、11【解析】由題設(shè)可得,結(jié)合等比數(shù)列的定義知從第二項(xiàng)開始是公比為2的等比數(shù)列,進(jìn)而寫出的通項(xiàng)公式,即可求使成立的最小值n.【詳解】因?yàn)?,所以,兩式相除得,整理?因?yàn)椋蕪牡诙?xiàng)開始是等比數(shù)列,且公比為2,因?yàn)?,則,所以,則,由得:,故故答案為:11.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據(jù)分式的合分比性質(zhì)以及等差數(shù)列的性質(zhì)即可求出;(2)根據(jù)裂項(xiàng)相消法即可求出【小問1詳解】由題意:,即,又∵,∴,∴,∴,.【小問2詳解】因?yàn)?,?18、(1)證明見解析(2)【解析】(1)證明平面,可得出,再由結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得結(jié)果.【小問1詳解】證明:正中,點(diǎn)為的中點(diǎn),,因?yàn)槠矫?,平面,則,,則平面,平面,則,又,且,平面.【小問2詳解】解:因?yàn)?,以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、、,設(shè)平面的法向量為,,,則,取,可得,平面,平面,則,又因?yàn)?,,故平面,所以,平面的一個法向量為,則.因此,平面和平面夾角的余弦值為.19、(1)證明見解析(2)證明見解析【解析】(1)由題意可得,從而可證.(2)由題意可得平面,從而可得,由根據(jù)條件可得,從而可得平面,從而可得證.【小問1詳解】由分別為線段的中點(diǎn).由中位線定理知,又平面,且平面,所以直線平面【小問2詳解】兩兩垂直,即,且所以平面,又平面,所以由,且分別為線段的中點(diǎn),所以,因此根據(jù)線面垂直判定定理得平面,且平面所以平面平面.20、(1)(2)或【解析】(1)根據(jù)垂徑定理,可直接計(jì)算出圓的半徑;(2)根據(jù)直線的斜率是否存在分類討論,斜率不存在時,可得到直線方程為的直線滿足題意,斜率存在時,利用直線與圓相切,即到直線的距離等于半徑,然后解出關(guān)于斜率的方程即可.【小問1詳解】不妨設(shè)圓的半徑為,根據(jù)垂徑定理,可得:解得:則圓的方程為:【小問2詳解】當(dāng)直線的斜率不存在時,則有:故此時直線與圓相切,滿足題意當(dāng)直線的斜率存在時,不妨設(shè)直線的斜率為,點(diǎn)的直線的距離為直線的方程為:則有:解得:,此時直線的方程為:綜上可得,直線的方程為:或21、(1)(2)或【解析】(1)由已知可得交點(diǎn)坐標(biāo),再根據(jù)直線間的位置關(guān)系可得直線方程;(2)設(shè)直線方程,根據(jù)直線與兩坐標(biāo)軸圍成的三角形的面積,列出方程組,解方程.【小問1詳解】解:聯(lián)立的方程,解得,即設(shè)直線的方程為:,將帶入可得所以的方程為:;【小問2詳解】解:法①:易知直線在兩坐標(biāo)軸上的截距均不為,設(shè)直線方程為:,則直線與兩坐標(biāo)軸交點(diǎn)為,由題意得,解得:或所以直線的方程為:或,即:或.法②:設(shè)直線的斜率為,則的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 傳媒員工合同范例
- 專業(yè)焊工勞務(wù)合同模板
- 培訓(xùn)學(xué)校保安用工合同范例
- 使用公司資質(zhì)合同范例
- 圍欄工程外包合同范例標(biāo)準(zhǔn)
- 勞動合同范例樣填
- 單位賒賬合同范例
- 企業(yè)手機(jī)采購合同范例
- 買賣股票合同范例
- 加油站防水施工合同范例
- 2024年企業(yè)數(shù)據(jù)存儲與安全服務(wù)合同
- 2024年消防宣傳月知識競賽考試題庫500題(含答案)
- 2024年典型事故案例警示教育手冊15例
- 高一歷史(中外歷史綱要上冊)期中測試卷及答案
- 20K607 防排煙及暖通防火設(shè)計(jì)審查與安裝
- 一氧化碳中毒培訓(xùn)課件
- 教案(餐巾折花)
- Humpty兒童跌倒評估量表
- 金山江天寺規(guī)約
- 三相四線制功率計(jì)算原理及計(jì)算方法(講得很好)
- 南郵綜合設(shè)計(jì)報(bào)告(課程設(shè)計(jì))proteus和Keil
評論
0/150
提交評論