版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省諸暨市暨陽初中數(shù)學(xué)高二上期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的定義域為,其導(dǎo)函數(shù)為,若,則下列式子一定成立的是()A. B.C. D.2.曲線與曲線的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等3.函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增B.函數(shù)的遞減區(qū)間為C.函數(shù)在處取得極大值D.函數(shù)在處取得極小值4.連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,記,則下列說法正確的是()A.事件“”的概率為 B.事件“t是奇數(shù)”與“”互為對立事件C.事件“”與“”互為互斥事件 D.事件“且”的概率為5.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則為()A. B.C. D.6.《西游記》《三國演義》《水滸傳》和《紅樓夢》是中國古典文學(xué)瑰寶,并稱為中國古典小說四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機調(diào)查了100學(xué)生,其中閱讀過《西游記》或《紅樓夢》的學(xué)生共有90位,閱讀過《紅樓夢》的學(xué)生共有80位,閱讀過《西游記》且閱讀過《紅樓夢》的學(xué)生共有60位,則該校閱讀過《西游記》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計值為A. B.C. D.7.點M在圓上,點N在直線上,則|MN|的最小值是()A. B.C. D.18.已知是定義在上的函數(shù),其導(dǎo)函數(shù)為,且,且,則不等式的解集為()A. B.C. D.9.設(shè),,則與的等比中項為()A. B.C. D.10.已知函數(shù)對于任意的滿足,其中是函數(shù)的導(dǎo)函數(shù),則下列各式正確的是()A. B.C. D.11.如圖,若斜邊長為的等腰直角(與重合)是水平放置的的直觀圖,則的面積為()A.2 B.C. D.812.等差數(shù)列中,已知,則()A.36 B.27C.18 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知正三棱臺上、下底面邊長分別為1和2,高為1,則這個正三棱臺的體積為______.14.已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于A,B兩點,線段AB的長為5,若,那么△的周長是______.15.在空間直角坐標(biāo)系中,已知,,,,則___________.16.在中,,,,則此三角形的最大邊長為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知過拋物線的焦點F且斜率為1的直線l交C于A,B兩點,且(1)求拋物線C的方程;(2)求以C的準(zhǔn)線與x軸的交點D為圓心且與直線l相切的圓的方程18.(12分)已知函數(shù).(I)若曲線在點處的切線方程為,求的值;(II)若,求的單調(diào)區(qū)間.19.(12分)如圖,在三棱柱中,平面ABC,,,,點D,E分別在棱和棱上,且,,M為棱中點(1)求證:;(2)求直線AB與平面所成角的正弦值20.(12分)雙曲線的離心率為2,經(jīng)過C的焦點垂直于x軸的直線被C所截得的弦長為12.(1)求C的方程;(2)設(shè)A,B是C上兩點,線段AB的中點為,求直線AB的方程.21.(12分)已知.(1)當(dāng)時,求曲線在點處的切線方程;(2)若在處取得極值,求在上的最小值.22.(10分)如圖,四邊形為矩形,,且平面平面.(1)若,分別是,的中點,求證:平面;(2)若是等邊三角形,求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】令,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,即可得到,從而求出答案【詳解】解:令,則,又不等式恒成立,所以,即,所以在單調(diào)遞增,故,即,所以,故選:B2、D【解析】分別求出兩曲線表示的橢圓的位置,長軸長、短軸長、離心率和焦距,比較可得答案.【詳解】曲線表示焦點在x軸上的橢圓,長軸長為10,短軸長為6,離心率為,焦距為8,曲線焦點在x軸上的橢圓,長軸長為,短軸長為,離心率為,焦距為,故選:D3、C【解析】根據(jù)函數(shù)單調(diào)性與導(dǎo)數(shù)之間的關(guān)系及極值的定義結(jié)合圖像即可得出答案.【詳解】解:根據(jù)函數(shù)的導(dǎo)函數(shù)的圖象可得,當(dāng)時,,故函數(shù)在和上遞減,當(dāng)時,,故函數(shù)在和上遞增,所以函數(shù)在和處取得極小值,在處取得極大值,故ABD錯誤,C正確.故選:C.4、D【解析】計算出事件“t=12”的概率可判斷A;根據(jù)對立事件的概念,可判斷B;根據(jù)互斥事件的概念,可判斷C;計算出事件“t>8且mn<32”的概率可判斷D;【詳解】連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,則共有個基本事件,記t=m+n,則事件“t=12”必須兩次都擲出6點,則事件“t=12”的概率為,故A錯誤;事件“t是奇數(shù)”與“m=n”為互斥不對立事件,如事件m=3,n=5,故B錯誤;事件“t=2”與“t≠3”不是互斥事件,故C錯誤;事件“t>8且mn<32”有共9個基本事件,故事件“t>8且mn<32”的概率為,故D正確;故選:D5、B【解析】根據(jù)空間向量運算求得正確答案.【詳解】.故選:B6、C【解析】根據(jù)題先求出閱讀過西游記人數(shù),進(jìn)而得解.【詳解】由題意得,閱讀過《西游記》的學(xué)生人數(shù)為90-80+60=70,則其與該校學(xué)生人數(shù)之比為70÷100=0.7.故選C【點睛】本題考查容斥原理,滲透了數(shù)據(jù)處理和數(shù)學(xué)運算素養(yǎng).采取去重法,利用轉(zhuǎn)化與化歸思想解題7、C【解析】根據(jù)題意可知圓心,又由于線外一點到已知直線的垂線段最短,結(jié)合點到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,半徑為,所以圓心到的距離為,所以的最小值為.故選:C.8、B【解析】令,再結(jié)合,和已知條件將問題轉(zhuǎn)化為,最后結(jié)合單調(diào)性求解即可.【詳解】解:令,則,因為,所以,即函數(shù)為上的增函數(shù),因為,不等式可化為,所以,故不等式的解集為故選:B9、C【解析】利用等比中項的定義可求得結(jié)果.【詳解】由題意可知,與的等比中項為.故選:C.10、C【解析】令,結(jié)合題意可得,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,進(jìn)而得出,變形即可得出結(jié)果.【詳解】令,則,又,所以,令,令,所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增,所以,即,則.故選:C11、C【解析】由斜二測還原圖形計算即可求得結(jié)果.【詳解】在斜二測直觀圖中,由為等腰直角三角形,,可得,.還原原圖形如圖:則,則.故選:C12、B【解析】直接利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)求解.【詳解】解:由題得.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先計算兩個底面的面積,再由體積公式計算即可.【詳解】上底面的面積為,下底面的面積為,則這個正三棱臺的體積為.故答案為:14、16【解析】利用橢圓的定義可知,又△的周長,即可求焦點三角形的周長.【詳解】由橢圓定義知:,所以△的周長為.故答案為:16.15、或##或【解析】根據(jù)向量平行時坐標(biāo)的關(guān)系和向量的模公式即可求解.【詳解】,且,設(shè),,解得,或.故答案為:或.16、【解析】可知B對的邊最大,再用正弦定理計算即可.【詳解】利用正弦定理可知,B對的邊最大,因為,,所以,.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)首先表示出直線l的方程,再聯(lián)立直線與拋物線方程,消去,列出韋達(dá)定理,再根據(jù)焦點弦公式計算可得;(2)由(1)可得,再利用點到直線的距離求出半徑,即可求出圓的方程;【詳解】解析:(1)由已知得點,∴直線l的方程為,聯(lián)立去,消去整理得設(shè),,則,,∴拋物線C的方程為(2)由(1)可得,直線l的方程為,∴圓D的半徑,∴圓D的方程為【點睛】本題考查拋物線的簡單幾何性質(zhì),屬于中檔題.18、(Ⅰ)(Ⅱ)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【解析】(Ⅰ)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意可得得到關(guān)于的方程組,解得;(Ⅱ)求出函數(shù)的導(dǎo)函數(shù),解得函數(shù)的單調(diào)遞增區(qū)間,解得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:(Ⅰ)因為函數(shù)在點處的切線方程為解得(Ⅱ)令,得或.因為,所以時,;時,.故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【點睛】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.19、(1)證明見解析;(2).【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構(gòu)建空間直角坐標(biāo)系,確定相關(guān)點坐標(biāo),進(jìn)而求的方向向量、面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點,則,又,則平面,由平面,因此,.【小問2詳解】以為原點,以,,為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示,可得:,,,,,,.∴,,,,設(shè)為面的法向量,則,令得,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.20、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得的方程.(2)結(jié)合點差法求得直線的斜率,從而求得直線的方程.【小問1詳解】因為C的離心率為2,所以,可得.將代入可得,由題設(shè).解得,,,所以C的方程為.【小問2詳解】設(shè),,則,.因此,即.因為線段AB的中點為,所以,,從而,于是直線AB的方程是.21、(1);(2).【解析】(1)利用導(dǎo)數(shù)的幾何意義求切線的斜率,再利用點斜式方程即可求出切線方程;(2)根據(jù)極值點求出的值,根據(jù)導(dǎo)數(shù)值的正負(fù)判斷函數(shù)的單調(diào)性,即可求出最小值.【小問1詳解】∵,,∴∴∴在處的切線為,即;【小問2詳解】∵,由題可知,∴,∴單調(diào)遞增,單調(diào)遞減,∵,,∴.22、(1)證明見解析(2)【解析】(1)通過構(gòu)造平行四邊形,在平面中找到即可證明(2)建立直角坐標(biāo)系,通過兩個面的法向量夾角的余弦值求出面面夾角的余弦值【小問1詳解】證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版智慧城市基礎(chǔ)設(shè)施施工進(jìn)度管理協(xié)議3篇
- 2025年度體育場館建設(shè)承包合同書模板8篇
- 2024精油購銷合同范本
- 2025年度個人房屋建造項目驗收標(biāo)準(zhǔn)合同4篇
- 2025年物流信息化平臺開發(fā)與應(yīng)用合同3篇
- 二零二五年度集體土地征收補償安置協(xié)議范本3篇
- 2025版二手房買賣合同示范文本4篇
- 2025版協(xié)議離婚條件及程序法律援助與指導(dǎo)合同3篇
- 2025年度個人股權(quán)質(zhì)押股權(quán)投資基金管理合同(專業(yè)管理版)3篇
- 2025版美術(shù)教師教育項目評估聘用合同協(xié)議4篇
- 生物人教版七年級(上冊)第一章第一節(jié) 生物的特征 (共28張)2024版新教材
- 2025屆安徽省皖南八校高三上學(xué)期8月摸底考試英語試題+
- 工會資金采購管理辦法
- 玩具活動方案設(shè)計
- Q∕GDW 516-2010 500kV~1000kV 輸電線路劣化懸式絕緣子檢測規(guī)程
- 2024年湖南汽車工程職業(yè)學(xué)院單招職業(yè)技能測試題庫及答案解析
- 家長心理健康教育知識講座
- GB/T 292-2023滾動軸承角接觸球軸承外形尺寸
- 軍人結(jié)婚函調(diào)報告表
- 民用無人駕駛航空器實名制登記管理規(guī)定
評論
0/150
提交評論