版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆四川省成都實(shí)驗(yàn)外國(guó)語學(xué)校數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在正方體ABCD﹣A1B1C1D1中,E為棱A1B1上一點(diǎn),且AB=2,若二面角B1﹣BC1﹣E為45°,則四面體BB1C1E的外接球的表面積為()A.π B.12πC.9π D.10π2.若直線與平行,則m的值為()A.-2 B.-1或-2C.1或-2 D.13.設(shè)為拋物線焦點(diǎn),直線,點(diǎn)為上任意一點(diǎn),過點(diǎn)作于,則()A.3 B.4C.2 D.不能確定4.已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上的一點(diǎn),點(diǎn)是線段的中點(diǎn),為坐標(biāo)原點(diǎn),若,則()A.3 B.4C.6 D.115.在等差數(shù)列中,,則()A.6 B.3C.2 D.16.如圖,在長(zhǎng)方體中,,,則直線和夾角的余弦值為()A. B.C. D.7.二項(xiàng)式的展開式中,各項(xiàng)二項(xiàng)式系數(shù)的和是()A.2 B.8C.16 D.328.函數(shù)在的最大值是()A. B.C. D.9.已知是橢圓兩個(gè)焦點(diǎn),P在橢圓上,,且當(dāng)時(shí),的面積最大,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.10.設(shè)為等差數(shù)列的前項(xiàng)和,若,則的值為()A.14 B.28C.36 D.4811.在正方體中,分別是線段的中點(diǎn),則點(diǎn)到直線的距離是()A. B.C. D.12.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中項(xiàng)的系數(shù)是,則正整數(shù)______________.14.在2021件產(chǎn)品中有10件次品,任意抽取3件,則抽到次品個(gè)數(shù)的數(shù)學(xué)期望的值是______.15.給定點(diǎn)、、與點(diǎn),求點(diǎn)到平面的距離______.16.?dāng)?shù)列的前項(xiàng)和為,若,則=____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)從①;②;③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并作答設(shè)等差數(shù)列的前n項(xiàng)和為,,______;設(shè)數(shù)列的前n項(xiàng)和為,(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和注:作答前請(qǐng)先指明所選條件,如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分18.(12分)某校高二年級(jí)全體學(xué)生參加了一次數(shù)學(xué)測(cè)試,學(xué)校利用簡(jiǎn)單隨機(jī)抽樣方法從甲班、乙班各抽取五名同學(xué)的數(shù)學(xué)測(cè)試成績(jī)(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,求此兩人都來自甲班的概率.19.(12分)如圖,在長(zhǎng)方體中,,點(diǎn)E在棱上運(yùn)動(dòng)(1)證明:;(2)當(dāng)E為棱的中點(diǎn)時(shí),求直線與平面所成角的正弦值;(3)等于何值時(shí),二面角的大小為?20.(12分)設(shè)p:;q:關(guān)于x的方程無實(shí)根.(1)若q為真命題,求實(shí)數(shù)k的取值范圍;(2)若是假命題,且是真命題,求實(shí)數(shù)k的取值范圍.21.(12分)(1)已知等軸雙曲線的上頂點(diǎn)到一條漸近線的距離為,求此雙曲線的方程;(2)已知拋物線的焦點(diǎn)為,設(shè)過焦點(diǎn)且傾斜角為的直線交拋物線于,兩點(diǎn),求線段的長(zhǎng)22.(10分)直線經(jīng)過點(diǎn),且與圓相交與兩點(diǎn),截得的弦長(zhǎng)為,求的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】連接交于,可得,利用線面垂直的判定定理可得:平面,于是,可得而為二面角的平面角,再求出四面體的外接球半徑,進(jìn)而利用球的表面積計(jì)算公式得出結(jié)論【詳解】連接交于,則,易知,則平面,所以,從而為二面角的平面角,則.因?yàn)?,所以,所以四面體的外接球半徑故四面體BB1C1E的外接球的表面積為故選:D【點(diǎn)睛】本題考查了正方體的性質(zhì)、線面垂直的判定與性質(zhì)定理、二面角的平面角、球的表面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題2、C【解析】利用兩直線平行的判定有,即可求參數(shù)值.【詳解】由題設(shè),,可得或.經(jīng)驗(yàn)證不重合,滿足題意,故選:C.3、A【解析】由拋物線方程求出準(zhǔn)線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準(zhǔn)線為,設(shè),由拋物線的定義可得,因?yàn)檫^點(diǎn)作于,可得,所以,故選:A.4、A【解析】利用橢圓的定義可得,再結(jié)合條件即求.【詳解】由橢圓的定義可知,因?yàn)?,所以,因?yàn)辄c(diǎn)分別是線段,的中點(diǎn),所以是的中位線,所以.故選:A.5、B【解析】根據(jù)等差數(shù)列下標(biāo)性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭堑炔顢?shù)列,所以,故選:B6、D【解析】如圖建立空間直角坐標(biāo)系,分別求出的坐標(biāo),由空間向量夾角公式即可求解.【詳解】如圖:以為原點(diǎn),分別以,,所在的直線為,,軸建立空間直角坐標(biāo)系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.7、D【解析】根據(jù)給定條件利用二項(xiàng)式系數(shù)的性質(zhì)直接計(jì)算作答.【詳解】二項(xiàng)式的展開式的各項(xiàng)二項(xiàng)式系數(shù)的和是.故選:D8、C【解析】利用函數(shù)單調(diào)性求解.【詳解】解:因?yàn)楹瘮?shù)是單調(diào)遞增函數(shù),所以函數(shù)也是單調(diào)遞增函數(shù),所以.故選:C9、A【解析】由題意知c=3,當(dāng)△F1PF2的面積最大時(shí),點(diǎn)P與橢圓在y軸上的頂點(diǎn)重合,即可解出【詳解】由題意知c=3,當(dāng)△F1PF2的面積最大時(shí),點(diǎn)P與橢圓在y軸上的頂點(diǎn)重合,∵時(shí),△F1PF2的面積最大,∴a==,b=∴橢圓的標(biāo)準(zhǔn)方程為故選:A10、D【解析】利用等差數(shù)列的前項(xiàng)和公式以及等差數(shù)列的性質(zhì)即可求出.【詳解】因?yàn)闉榈炔顢?shù)列的前項(xiàng)和,所以故選:D【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和公式的計(jì)算以及等差數(shù)列性質(zhì)的應(yīng)用,屬于較易題.11、A【解析】以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系,然后,列出計(jì)算公式進(jìn)行求解即可【詳解】如圖,以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系.因?yàn)?,所以,所以,則點(diǎn)到直線的距離故選:A12、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因?yàn)橹本€的傾斜角為45°,所以直線的斜率為,因?yàn)橹本€在軸上的截距是,所以所求的直線方程為,即,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由已知二項(xiàng)式可得展開式通項(xiàng)為,根據(jù)已知條件有,即可求出值.詳解】由題設(shè),,∴,則且為正整數(shù),解得.故答案為:4.14、【解析】設(shè)抽到的次品的個(gè)數(shù)為,則,求出對(duì)應(yīng)的概率即得解.【詳解】解:設(shè)抽到的次品的個(gè)數(shù)為,則,所以所以抽到次品個(gè)數(shù)的數(shù)學(xué)期望的值是故答案為:15、【解析】先求出平面的法向量,再利用點(diǎn)到面的距離公式計(jì)算即可.【詳解】設(shè)平面的法向量為,點(diǎn)到平面的距離為,,,即,令,得故答案為:.16、【解析】利用裂項(xiàng)相消法求和即可.【詳解】解:因?yàn)?,所?故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析,,(2)【解析】(1)設(shè)數(shù)列的首項(xiàng)為,公差為d,選①由求解;選②由求解;選③由求解;則,由,利用數(shù)列通項(xiàng)與前n項(xiàng)和公式求解;(2)易知,再利用錯(cuò)位相減法求解.【小問1詳解】解:設(shè)數(shù)列的首項(xiàng)為,公差為d,選①得,則,選②得,則,選③得,則,所以數(shù)列的通項(xiàng)公式為因?yàn)?,所以?dāng)時(shí),,則當(dāng)時(shí),,則,所以是以首項(xiàng)為2,公比為2的等比數(shù)列,所以【小問2詳解】因?yàn)?,所以?shù)列的前n項(xiàng)和①②①-②得∴,則18、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,用列舉法寫出基本事件總數(shù),再利用古典概型的概率計(jì)算公式即可求解.【小問1詳解】根據(jù)莖葉圖可知1班中位數(shù)為86,則,又∵,且故【小問2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設(shè)甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學(xué)共有,,,,,共有6組基本事件,且每組出現(xiàn)都是等可能的記:“從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,兩人都來自甲班”為事件M,事件M包括:共1個(gè)基本事件,由古典概型的計(jì)算概率的公式知∴所以兩人都來自甲班的概率為19、(1)證明見解析;(2);(3).【解析】(1)連接、,長(zhǎng)方體、線面垂直的性質(zhì)有、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)連接,由已知條件及勾股定理可得、,即可求、,等體積法求到面的距離,又直線與面所成角即為與面所成角,即可求線面角的正弦值.(3)由題設(shè)易知二面角為,過作于,連接,可得二面角平面角為,令,由長(zhǎng)方體的性質(zhì)及勾股定理構(gòu)造方程求即可.【小問1詳解】由題設(shè),連接、,又長(zhǎng)方體中,∴為正方形,即,又面,面,即,∵,面,∴面,而面,即.【小問2詳解】連接,由E為棱的中點(diǎn),則,∴,又,故,∴,又,,故,則,由,若到面的距離為,又,,∴,可得,又,∴直線與面所成角即為與面所成角為,故.【小問3詳解】二面角大小為,即二面角為,由長(zhǎng)方體性質(zhì)知:面,面,則,過作于,連接,又,∴面,則二面角平面角為,∴,令,則,故,而,,∴,∴,整理得,解得.∴時(shí),二面角的大小為.20、(1);(2).【解析】(1)根據(jù)命題的真假,結(jié)合一元二次方程無實(shí)根,列出的不等式,即可求得結(jié)果;(2)求得命題為真對(duì)應(yīng)的的范圍,結(jié)合命題一個(gè)為真命題一個(gè)為假命題,即可列出的不等式組,求解即可.【小問1詳解】若q為真命題,則,解得,即實(shí)數(shù)k的取值范圍為.【小問2詳解】若p為真,,解得,由是假命題,且是真命題,得:p、q兩命題一真一假,當(dāng)p真q假時(shí),或,得,當(dāng)p假q真時(shí),,此時(shí)無解.綜上的取值范圍為.21、(1);(2)8.【解析】(1)由等軸雙曲線的一條漸近線方程為,再由點(diǎn)到直線距離公式求解即可;(2)求得直線方程代入拋物線,結(jié)合焦點(diǎn)弦長(zhǎng)求解即可.【詳解】(1)由等軸雙曲線的一條漸近線方程為,且頂點(diǎn)到漸近線的距離為,可得,解得,故雙曲線方程(2)拋物線的焦點(diǎn)為直線的方程為,即與拋物線方程聯(lián)立,得,消,整理得,設(shè)其兩根為,,且由拋物線的定義可知,所以,線段的長(zhǎng)是【點(diǎn)睛】(1)直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線與拋物線弦長(zhǎng)問題,要注意直線是否過拋物線的焦點(diǎn),若過拋物線的焦點(diǎn),可直接使用公式|AB|=x1+x2+p,若
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度林業(yè)信息化建設(shè)承包合同2篇
- 2024新版住宅房產(chǎn)交易協(xié)議版B版
- 2024年高??蒲薪?jīng)費(fèi)管理協(xié)議
- 2024年度高性能預(yù)應(yīng)力管樁加工與勞務(wù)分包協(xié)議3篇
- 2024幼兒園幼兒教師崗位聘任與勞動(dòng)合同書3篇
- 2025年度高級(jí)管理人員CEO職位聘任合同范本3篇
- 2024街區(qū)商業(yè)門頭復(fù)古設(shè)計(jì)施工協(xié)議版B版
- 昭通衛(wèi)生職業(yè)學(xué)院《界面交互設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《消防疏散演習(xí)流程》課件
- 眼睛面診知識(shí)培訓(xùn)課件
- 初中新人教版八年級(jí)下冊(cè)英語單詞表(按單元排序)附音標(biāo)及漢語意思excel版可編輯修改
- 河南省駐馬店市重點(diǎn)中學(xué)2023-2024學(xué)年九年級(jí)上學(xué)期12月月考語文試題(無答案)
- 咨詢服務(wù)協(xié)議書范本(完整版)
- 加快建設(shè)制造強(qiáng)國(guó) 夯實(shí)實(shí)體經(jīng)濟(jì)基礎(chǔ)課件
- 影像檢查診斷報(bào)告
- 蘭亭集序教學(xué)設(shè)計(jì)一等獎(jiǎng)(三篇)
- FMCW無線電高度表天線被部分遮擋下的影響分析及驗(yàn)證方法
- 高考專題復(fù)習(xí):《史記 孫子吳起列傳》分析
- 全國(guó)各省市縣統(tǒng)計(jì)表-
- 醋酸加尼瑞克注射液
- 蘇科版八年級(jí)物理上冊(cè)《運(yùn)動(dòng)的相對(duì)性》教案及教學(xué)反思
評(píng)論
0/150
提交評(píng)論