![北京市朝陽(yáng)區(qū)17中2023年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第1頁(yè)](http://file4.renrendoc.com/view/63af304cb31562ba978c59aafeabe760/63af304cb31562ba978c59aafeabe7601.gif)
![北京市朝陽(yáng)區(qū)17中2023年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第2頁(yè)](http://file4.renrendoc.com/view/63af304cb31562ba978c59aafeabe760/63af304cb31562ba978c59aafeabe7602.gif)
![北京市朝陽(yáng)區(qū)17中2023年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第3頁(yè)](http://file4.renrendoc.com/view/63af304cb31562ba978c59aafeabe760/63af304cb31562ba978c59aafeabe7603.gif)
![北京市朝陽(yáng)區(qū)17中2023年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第4頁(yè)](http://file4.renrendoc.com/view/63af304cb31562ba978c59aafeabe760/63af304cb31562ba978c59aafeabe7604.gif)
![北京市朝陽(yáng)區(qū)17中2023年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第5頁(yè)](http://file4.renrendoc.com/view/63af304cb31562ba978c59aafeabe760/63af304cb31562ba978c59aafeabe7605.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市朝陽(yáng)區(qū)17中2023年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.曲線上 B.曲線上C.直線上 D.直線上2.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.8 B.16C. D.3.已知數(shù)列滿足,,數(shù)列的前n項(xiàng)和為,若,,成等差數(shù)列,則n=()A.6 B.8C.16 D.224.在平面直角坐標(biāo)系xOy中,雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)M是雙曲線右支上一點(diǎn),,且,則雙曲線的離心率為()A. B.C. D.5.拋物線的準(zhǔn)線方程為()A. B.C. D.6.繞著它的一邊旋轉(zhuǎn)一周得到的幾何體可能是()A.圓臺(tái) B.圓臺(tái)或兩個(gè)圓錐的組合體C.圓錐或兩個(gè)圓錐的組合體 D.圓柱7.總體有編號(hào)為01,02,…,19,20的20個(gè)個(gè)體組成,利用下面的隨機(jī)數(shù)表選取3個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第3個(gè)個(gè)體的編號(hào)為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.148.下列命題錯(cuò)誤的是()A,B.命題“”的否定是“”C.設(shè),則“且”是“”的必要不充分條件D.設(shè),則“”是“”的必要不充分條件9.已知圓:,點(diǎn),則點(diǎn)到圓上點(diǎn)的最小距離為()A.1 B.2C. D.10.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)的值為()A. B.C.8 D.11.如果,,…,是拋物線C:上的點(diǎn),它們的橫坐標(biāo)依次為,,…,,點(diǎn)F是拋物線C的焦點(diǎn).若=10,=10+n,則p等于()A.2 B.C. D.412.函數(shù)是偶函數(shù)且在上單調(diào)遞減,,則的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正方體的棱長(zhǎng)為為的中點(diǎn),為面內(nèi)一點(diǎn).若點(diǎn)到面的距離與到直線的距離相等,則三棱錐體積的最小值為__________14.如圖,已知橢圓E的方程為(a>b>0),A為橢圓的左頂點(diǎn),B,C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=30°,則橢圓的離心率等于________15.已知雙曲線(a,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)點(diǎn)F1且傾斜角為的直線l與雙曲線的左、右支分別交于點(diǎn)A,B.且|AF2|=|BF2|,則該雙曲線的離心率為____________.16.若向量,且?jiàn)A角的余弦值為________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知鈍角內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別a,b,c,若,,.求a的值18.(12分)已知函數(shù),為的導(dǎo)函數(shù)(1)求的定義域和導(dǎo)函數(shù);(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(3)若對(duì),都有成立,且存在,使成立,求實(shí)數(shù)a的取值范圍19.(12分)已知橢圓,離心率分別為左右焦點(diǎn),橢圓上一點(diǎn)滿足,且的面積為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)作斜率為的直線交橢圓于兩點(diǎn).過(guò)點(diǎn)且平行于的直線交橢圓于點(diǎn),證明:為定值.20.(12分)如圖,在四棱錐中,底面ABCD為矩形,側(cè)面PAD是正三角形,平面平面ABCD,M是PD的中點(diǎn)(1)證明:平面PCD;(2)若PB與底面ABCD所成角的正切值為,求二面角的正弦值21.(12分)在中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,滿足.(1)求A;(2)若,求面積的最大值.22.(10分)如圖,在四棱錐中,已知平面ABCD,為等邊三角形,,,.(1)證明:平面PAD;(2)若M是BP的中點(diǎn),求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)復(fù)數(shù)的除法運(yùn)算,先化簡(jiǎn),進(jìn)而求出,再由復(fù)數(shù)的幾何意義,即可得出結(jié)果.【詳解】因?yàn)?,所以,因此?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,可知其在曲線上.故選:B2、C【解析】畫出直觀圖,利用椎體體積公式進(jìn)行求解.【詳解】畫出直觀圖,為四棱錐A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE兩兩垂直,故體積為.故選:C3、D【解析】利用累加法求得列的通項(xiàng)公式,再利用裂項(xiàng)相消法求得數(shù)列的前n項(xiàng)和為,再根據(jù),,成等差數(shù)列,得,從而可得出答案.【詳解】解:因?yàn)?,且,所以?dāng)時(shí),,因?yàn)橐矟M足,所以.因?yàn)?,所?若,,成等差數(shù)列,則,即,得.故選:D.4、A【解析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【詳解】因?yàn)?,,所以在中,邊上的中線等于的一半,所以.因?yàn)?,所以可設(shè),,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A5、A【解析】將拋物線的方程化成標(biāo)準(zhǔn)形式,即可得到答案;【詳解】拋物線的方程化成標(biāo)準(zhǔn)形式,準(zhǔn)線方程為,故選:A.6、C【解析】討論是按直角邊旋轉(zhuǎn)還是按斜邊旋轉(zhuǎn)【詳解】按直角邊選擇可得下圖圓錐:如果按直角邊旋轉(zhuǎn)可得下圖的兩個(gè)圓錐的組合體:故選:C7、D【解析】由隨機(jī)數(shù)表法抽樣原理即可求出答案.【詳解】根據(jù)題意,依次讀出的數(shù)據(jù)為65(舍去),72(舍去),08,02,63(舍去),14,即第三個(gè)個(gè)體編號(hào)為14.故選:D.8、C【解析】根據(jù)題意,對(duì)四個(gè)選項(xiàng)一一進(jìn)行分析,舉出例子當(dāng)時(shí),,即可判斷A選項(xiàng);根據(jù)特稱命題的否定為全稱命題,可判斷B選項(xiàng);根據(jù)充分條件和必要條件的定義,即可判斷CD選項(xiàng).【詳解】解:對(duì)于A,當(dāng)時(shí),,,故A正確;對(duì)于B,根據(jù)特稱命題的否定為全稱命題,得“”的否定是“”,故B正確;對(duì)于C,當(dāng)且時(shí),成立;當(dāng)時(shí),卻不一定有且,如,因此“且”是“”的充分不必要條件,故C錯(cuò)誤;對(duì)于D,因?yàn)楫?dāng)時(shí),有可能等于0,當(dāng)時(shí),必有,所以“”是“”的必要不充分條件,故D正確.故選:C.9、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點(diǎn)到圓上點(diǎn)的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點(diǎn)到圓上點(diǎn)的最小距離為.故選:C.10、B【解析】化簡(jiǎn)方程為,求得拋物線的準(zhǔn)線方程,列出方程,即可求解.【詳解】由拋物線,可得,所以,所以拋物線的準(zhǔn)線方程為,因?yàn)閽佄锞€的準(zhǔn)線方程為,所以,解得.故選:B.11、A【解析】根據(jù)拋物線定義得個(gè)等式,相加后,利用已知條件可得結(jié)果.【詳解】拋物線C:的準(zhǔn)線為,根據(jù)拋物線的定義可知,,,,,所以,所以,所以,所以.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用拋物線的定義解題是解題關(guān)鍵,屬于基礎(chǔ)題.12、D【解析】分析可知函數(shù)在上為增函數(shù),且有,將所求不等式變形為,可得出關(guān)于實(shí)數(shù)的不等式,由此可解得實(shí)數(shù)的取值范圍.【詳解】因?yàn)楹瘮?shù)是偶函數(shù)且在上單調(diào)遞減,則該函數(shù)在上為增函數(shù),且,由可得,所以,,可得或,解得或.因此,不等式的解集為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由題意可知,點(diǎn)在平面內(nèi)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,如圖在底面建立平面直角坐標(biāo)系,求出拋物線方程,直線的方程,將直線向拋物線平移,恰好與拋物線相切時(shí),切點(diǎn)為點(diǎn),此時(shí)的面積最小,則三棱錐體積的最小【詳解】因?yàn)闉槊鎯?nèi)一點(diǎn),且點(diǎn)到面的距離與到直線的距離相等,所以點(diǎn)在平面內(nèi)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,如圖在底面,以所在的直線為軸,以的中垂線為軸建立平面直角坐標(biāo)系,則,設(shè)拋物線方程為,則,得,所以拋物線方程為,,直線的方程為,即,設(shè)與直線平行且與拋物線相切的直線方程為,由,得,由,得,所以與拋物線相切的直線為,此時(shí)切點(diǎn)為,且的面積最小,因?yàn)辄c(diǎn)到直線的距離為,所以的面積的最小值為,所以三棱錐體積的最小值為,故答案為:14、【解析】首先利用橢圓的對(duì)稱性和為平行四邊形,可以得出、兩點(diǎn)是關(guān)于軸對(duì)稱,進(jìn)而得到;設(shè),,,從而求出,然后由,利用,求得,最后根據(jù)得出離心率【詳解】解:是與軸重合的,且四邊形為平行四邊形,所以、兩點(diǎn)的縱坐標(biāo)相等,、的橫坐標(biāo)互為相反數(shù),、兩點(diǎn)是關(guān)于軸對(duì)稱的由題知:四邊形為平行四邊形,所以可設(shè),,代入橢圓方程解得:設(shè)為橢圓的右頂點(diǎn),,四邊形為平行四邊形對(duì)點(diǎn):解得:根據(jù):得:故答案為:15、【解析】由雙曲線的定義和直角三角形的勾股定理,以及解直角三角形,可得a,c的關(guān)系,再由離心率公式可得所求值【詳解】過(guò)F2作F2N⊥AB于點(diǎn)N,設(shè)|AF2|=|BF2|=m,因?yàn)橹本€l的傾斜角為,所以在直角三角形F1F2N中,,由雙曲線的定義可得|BF1|﹣|BF2|=2a,所以|BF1|=2a+m,同理可得|AF1|=m﹣2a,所以|AB|=|BF1|﹣|AF1|=4a,即|AN|=2a,所以|AF1|=c﹣2a,因此,在直角三角形ANF2中,|AF2|2=|NF2|2+|AN|2,所以(c)2=4a2+c2,所以c=a,則,故答案為:16、【解析】根據(jù)求解即可.【詳解】,故答案為:【點(diǎn)睛】本題主要考查了求空間中兩個(gè)向量的夾角,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)2.【解析】(1)利用三角恒等變換公式化簡(jiǎn)函數(shù),再利用三角函數(shù)性質(zhì)計(jì)算作答.(2)由(1)的結(jié)論及已知求出角C,再利用余弦定理計(jì)算判斷作答.【小問(wèn)1詳解】依題意,,則的最小正周期,由,解得,則在上單調(diào)遞增,所以的最小正周期為,遞增區(qū)間為.【小問(wèn)2詳解】由(1)知,,即,在中,,,則,即,,于是得,解得,在中,由余弦定理得:,即,解得或,當(dāng)時(shí),,為直角三角形,與是鈍角三角形矛盾,當(dāng)時(shí),,,此時(shí),是鈍角三角形,則,所以a的值是2.18、(1),(2)在單減,也單減,無(wú)增區(qū)間(3)【解析】(1)根據(jù)分母不等于0,對(duì)數(shù)的真數(shù)大于零即可求得函數(shù)的定義域,根據(jù)基本初等函數(shù)的求導(dǎo)公式及商的導(dǎo)數(shù)公式即可求出函數(shù)的導(dǎo)函數(shù);(2)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)的符號(hào)即可得出答案;(3)若對(duì),都有成立,即,即,令,,只要即可,利用導(dǎo)數(shù)求出函數(shù)的最小值即可求出的范圍,,,求出函數(shù)的值域,根據(jù)存在,使成立,則0在函數(shù)的值域中,從而可得出的范圍,即可得解.【小問(wèn)1詳解】解:的定義域?yàn)?,;【小?wèn)2詳解】解:當(dāng)時(shí),,恒成立,所以在和上遞減;【小問(wèn)3詳解】解:若對(duì),都有成立,即,即,令,,則,對(duì)于函數(shù),,當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在上遞增,在上遞減,所以,當(dāng)時(shí),,所以,所以,故恒成立,在為減函數(shù),所以,所以,由(1)知,,所以,記,令,,則原式的值域?yàn)?,因?yàn)榇嬖?,使成立,所以,,所以,綜上,【點(diǎn)睛】本題考查了函數(shù)的定義域及導(dǎo)數(shù)的四則運(yùn)算,考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查了不等式恒成立問(wèn)題,考查了計(jì)算能力及數(shù)據(jù)分析能力,對(duì)不等式恒成立合理變形轉(zhuǎn)化為求最值是解題關(guān)鍵.19、(1)(2)證明見(jiàn)解析【解析】(1)方法一:根據(jù)離心率以及,可得出,將條件轉(zhuǎn)化為點(diǎn)在以為直徑的圓上,即為圓與橢圓的交點(diǎn),將的面積用表示,求出,進(jìn)而求出橢圓的標(biāo)準(zhǔn)方程;方法二:根據(jù)橢圓的定義,,再根據(jù)勾股定理和直角三角形的面積公式,即可解得,又由離心率求出,則可求出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)出直線的方程,代入橢圓方程,根據(jù)韋達(dá)定理表示出,再將直線的方程代入橢圓方程,求出,則為定值.【小問(wèn)1詳解】方法一:由離心率,得:,所以橢圓上一點(diǎn),滿足,所以點(diǎn)為圓:與橢圓的交點(diǎn),聯(lián)立方程組解得所以,解得:,所以橢圓的標(biāo)準(zhǔn)方程為:.方法二:由橢圓定義;,因?yàn)?,所以,得到:,即,又,得所以橢圓C的標(biāo)準(zhǔn)方程為:;【小問(wèn)2詳解】設(shè)直線AB的方程為:.得設(shè)過(guò)點(diǎn)且平行于的直線方程:.20、(1)證明見(jiàn)解析(2)【解析】(1)依題意可得,再根據(jù)面面垂直的性質(zhì)得到平面,即可得到,即可得證;(2)取的中點(diǎn)為,連接,根據(jù)面面垂直的性質(zhì)得到平面,連接,即可得到為與底面所成角,令,,利用銳角三角函數(shù)的定義求出,建立如圖所示空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值,即可得解;【小問(wèn)1詳解】解:證明:在正中,為的中點(diǎn),∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小問(wèn)2詳解】解:如圖,取的中點(diǎn)為,連接,在正中,,平面平面,平面平面,∴平面,連接,則為與底面所成角,即.不妨取,,,,∴以為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則有,,,,,,∴,設(shè)面的一個(gè)法向量為,則由令,則,又因?yàn)槊?,取作為面的一個(gè)法向量,設(shè)二面角為,∴,∴,因此二面角的正弦值為21、(1)(2)【解析】(1)由正弦定理得,再由范圍可得答案;(2)由余弦定理和基本不等式可得,再由面積公式可得答案.【小問(wèn)1詳解】∵,由正弦定理得,又,所以,又,則;【小問(wèn)2詳解】由余弦定理得,即,所以,當(dāng)且僅當(dāng),取“=”,所以面積的最大值為22、(1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技展覽館的未來(lái)感裝修設(shè)計(jì)
- 跨學(xué)科視角下的德育工作研究
- 語(yǔ)言藝術(shù)在家庭教育中的實(shí)踐與探索
- 音樂(lè)教育中的多感官節(jié)奏感培訓(xùn)方法探討
- 2025年度酒店式公寓租賃合同酒店配套服務(wù)協(xié)議
- 2025年度知識(shí)產(chǎn)權(quán)合同簽訂與知識(shí)產(chǎn)權(quán)保護(hù)風(fēng)險(xiǎn)評(píng)估
- 2025年度籃球運(yùn)動(dòng)員與俱樂(lè)部轉(zhuǎn)會(huì)費(fèi)支付時(shí)間合同
- 科技企業(yè)的研發(fā)投入與長(zhǎng)期發(fā)展策略
- 二零二五年度員工勞動(dòng)合同解除與離職員工就業(yè)保障服務(wù)合同
- 二零二五年度物業(yè)收費(fèi)標(biāo)準(zhǔn)與公共空間優(yōu)化合同
- 2025年銷售部年度工作計(jì)劃
- 2024年蘇州工業(yè)園區(qū)服務(wù)外包職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試歷年參考題庫(kù)含答案解析
- ESG表現(xiàn)對(duì)企業(yè)財(cái)務(wù)績(jī)效的影響研究
- DB3713T 340-2024 實(shí)景三維數(shù)據(jù)接口及服務(wù)發(fā)布技術(shù)規(guī)范
- 八年級(jí)生物開學(xué)摸底考(長(zhǎng)沙專用)(考試版)
- 車間空調(diào)崗位送風(fēng)方案
- 使用錯(cuò)誤評(píng)估報(bào)告(可用性工程)模版
- 初一年級(jí)班主任上學(xué)期工作總結(jié)
- 2023-2024年同等學(xué)力經(jīng)濟(jì)學(xué)綜合真題及參考答案
- 農(nóng)村集體土地使用權(quán)轉(zhuǎn)讓協(xié)議
- 課件四露天礦山安全知識(shí)培訓(xùn)
評(píng)論
0/150
提交評(píng)論