版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年江西省臨川高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.方程化簡的結(jié)果是()A. B.C. D.2.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應(yīng)用,苜蓿葉型立交橋有兩層,將所有原來需要穿越相交道路的轉(zhuǎn)向都由環(huán)形匝道來實(shí)現(xiàn),即讓左轉(zhuǎn)車輛行駛環(huán)道后自右側(cè)切向匯入高速公路,四條環(huán)形匝道就形成了苜蓿葉的形狀.下列結(jié)論正確的個(gè)數(shù)是()①曲線C關(guān)于點(diǎn)(0,0)對(duì)稱;②曲線C關(guān)于直線y=x對(duì)稱;③曲線C的面積超過4π.A.0 B.1C.2 D.33.函數(shù)在其定義域內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象為A. B.C. D.4.已知m是2與8的等比中項(xiàng),則圓錐曲線x2﹣=1的離心率是()A.或 B.C. D.或5.長方體中,,,,為側(cè)面內(nèi)(含邊界)的動(dòng)點(diǎn),且滿足,則四棱錐體積的最小值為()A. B.C. D.6.已知1與5的等差中項(xiàng)是,又1,,,8成等比數(shù)列,公比為,則的值為()A.5 B.4C.3 D.67.已知拋物線的焦點(diǎn)為,在拋物線上有一點(diǎn),滿足,則的中點(diǎn)到軸的距離為()A. B.C. D.8.直線與橢圓交于兩點(diǎn),以線段為直徑的圓恰好經(jīng)過橢圓的左焦點(diǎn),則此橢圓的離心率為()A B.C. D.9.如果一個(gè)矩形長與寬的比值為,那么稱該矩形為黃金矩形.如圖,已知是黃金矩形,,分別在邊,上,且也是黃金矩形.若在矩形內(nèi)任取一點(diǎn),則該點(diǎn)取自黃金矩形內(nèi)的概率為()A. B.C. D.10.已知命題:;:若,則,則下列判斷正確的是()A.為真,為真,為假 B.為真,為假,為真C.為假,為假,為假 D.為真,為假,為假11.若圓的半徑為,則實(shí)數(shù)()A. B.-1C.1 D.12.設(shè)、是兩條不同的直線,、、是三個(gè)不同的平面,則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.教育部門對(duì)某校學(xué)生的閱讀素養(yǎng)進(jìn)行調(diào)研,在該校隨機(jī)抽取了100名學(xué)生進(jìn)行百分制檢測,現(xiàn)將所得的成績按照,分成6組,并根據(jù)所得數(shù)據(jù)作出了頻率分布直方圖(如圖所示),則成績?cè)谶@組的學(xué)生人數(shù)是________.14.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長的2倍,則異面直線AC與BD所成角的余弦值為______15.若雙曲線的離心率為2,則此雙曲線的漸近線方程___________.16.?dāng)?shù)列的前項(xiàng)和為,若,則=____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知(1)求B;(2)若,且是銳角三角形,求c的值18.(12分)如圖,直四棱柱的底面是菱形,,,直線與平面ABCD所成角的正弦值為.E,F(xiàn)分別為、的中點(diǎn).(1)求證:平面BED;(2)求直線與平面FAC所成角的正弦值.19.(12分)已知函數(shù)在處的切線方程為.(1)求的解析式;(2)求函數(shù)圖象上的點(diǎn)到直線的距離的最小值.20.(12分)已知橢圓的離心率為,以坐標(biāo)原點(diǎn)為圓心,以橢圓M的短半軸長為半徑的圓與直線有且只有一個(gè)公共點(diǎn)(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)過橢圓M的右焦點(diǎn)F的直線交橢圓M于A,B兩點(diǎn),過F且垂直于直線的直線交橢圓M于C,D兩點(diǎn),則是否存在實(shí)數(shù)使成立?若存在,求出的值;若不存在,請(qǐng)說明理由21.(12分)已知橢圓的焦距為,左、右焦點(diǎn)分別為,為橢圓上一點(diǎn),且軸,,為垂足,為坐標(biāo)原點(diǎn),且(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓的右焦點(diǎn)的直線(斜率不為)與橢圓交于兩點(diǎn),為軸正半軸上一點(diǎn),且,求點(diǎn)的坐標(biāo)22.(10分)已知橢圓的離心率為,點(diǎn)在橢圓上,直線與交于,兩點(diǎn)(1)求橢圓的方程及焦點(diǎn)坐標(biāo);(2)若線段的垂直平分線經(jīng)過點(diǎn),求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由方程的幾何意義得到是橢圓,進(jìn)而得到焦點(diǎn)和長軸長求解.【詳解】∵方程,表示平面內(nèi)到定點(diǎn)、的距離的和是常數(shù)的點(diǎn)的軌跡,∴它的軌跡是以為焦點(diǎn),長軸,焦距的橢圓;∴;∴橢圓的方程是,即為化簡的結(jié)果故選:D2、C【解析】根據(jù)圖像或解析式即可判斷對(duì)稱性①②;估算第一象限內(nèi)圖像面積即可判斷③.【詳解】①將點(diǎn)(-x,-y)代入后依然為,故曲線C關(guān)于原點(diǎn)對(duì)稱;②將點(diǎn)(y,x)代入后依然為,故曲線C關(guān)于y=x對(duì)稱;③曲線C在四個(gè)象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點(diǎn)最遠(yuǎn)的點(diǎn)的距離為顯然第一象限內(nèi)曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內(nèi)曲線C的面積小于,則曲線C的總面積小于4π.故③錯(cuò)誤.故選:C.3、D【解析】分析:根據(jù)函數(shù)單調(diào)性、極值與導(dǎo)數(shù)的關(guān)系即可得到結(jié)論.詳解:觀察函數(shù)圖象,從左到右單調(diào)性先單調(diào)遞增,然后單調(diào)遞減,最后單調(diào)遞增.對(duì)應(yīng)的導(dǎo)數(shù)符號(hào)為正,負(fù),正.,選項(xiàng)D的圖象正確.故選D.點(diǎn)睛:本題主要考查函數(shù)圖象的識(shí)別和判斷,函數(shù)單調(diào)性與導(dǎo)數(shù)符號(hào)的對(duì)應(yīng)關(guān)系是解題關(guān)鍵.4、A【解析】利用等比數(shù)列求出m,然后求解圓錐曲線的離心率即可【詳解】解:m是2與8的等比中項(xiàng),可得m=±4,當(dāng)m=4時(shí),圓錐曲線為雙曲線x2﹣=1,它的離心率為:,當(dāng)m=-4時(shí),圓錐曲線x2﹣=1為橢圓,離心率:,故選:A5、D【解析】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,分析可知點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn)的橢圓,求出橢圓的方程,可知當(dāng)點(diǎn)為橢圓與棱或的交點(diǎn)時(shí),點(diǎn)到平面的距離取最小值,由此可求得四棱錐體積的最小值.【詳解】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,設(shè)點(diǎn),其中,,則、,因?yàn)槠矫妫矫?,則,所以,,同理可得,所以,,所以點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且長軸長為的橢圓的一部分,則,,,所以,點(diǎn)的軌跡方程為,點(diǎn)到平面的距離為,當(dāng)點(diǎn)為曲線與棱或棱的交點(diǎn)時(shí),點(diǎn)到平面的距離取最小值,將代入方程得,因此,四棱錐體積的最小值為.故選:D.6、A【解析】由等差中項(xiàng)的概念列式求得值,再由等比數(shù)列的通項(xiàng)公式列式求解,則答案可求.【詳解】由題意,,則;又1,,,8成等比數(shù)列,公比為,,即,,故選:.7、A【解析】設(shè)點(diǎn),利用拋物線的定義求出的值,可求得點(diǎn)的橫坐標(biāo),即可得解.【詳解】設(shè)點(diǎn),易知拋物線的焦點(diǎn)為,由拋物線的定義可得,得,所以,點(diǎn)的橫坐標(biāo)為,故點(diǎn)到軸的距離為.故選:A.8、D【解析】根據(jù)題意作出示意圖,根據(jù)圓的性質(zhì)以及直線的傾斜角求解出的長度,再根據(jù)橢圓的定義求解出的關(guān)系,則橢圓離心率可求.【詳解】設(shè)橢圓的左右焦點(diǎn)分別為,如下圖:因?yàn)橐跃€段為直徑的圓恰好經(jīng)過橢圓的左焦點(diǎn),所以且,所以,又因?yàn)榈膬A斜角為,所以,所以為等邊三角形,所以,所以,因?yàn)?,所以,所以,所以,所以,故選:D.9、B【解析】由幾何概型的面積型,只需求小矩形的面積和大矩形面積之比.【詳解】由題意,不妨設(shè),則,又也是黃金矩形,則,又,解得,于是大矩形面積為:,小矩形的面積為,由幾何概型的面積型,概率為若在矩形內(nèi)任取一點(diǎn),則該點(diǎn)取自黃金矩形內(nèi)的概率為:.故選:B.10、D【解析】先判斷出命題,的真假,即可判斷.【詳解】因?yàn)槌闪ⅲ悦}為真,由可得或,所以命題為假命題,所以為真,為假,為假.故選:D.11、B【解析】將圓的方程化為標(biāo)準(zhǔn)方程,即可求出半徑的表達(dá)式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點(diǎn)睛】本題考查圓的方程,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.12、B【解析】根據(jù)線線、線面、面面的位置關(guān)系,對(duì)選項(xiàng)進(jìn)行逐一判斷即可.【詳解】選項(xiàng)A.一條直線垂直于一平面內(nèi)的,兩條相交直線,則改直線與平面垂直則由,不能得出,故選項(xiàng)A不正確.選項(xiàng)B.,則正確,故選項(xiàng)B正確.選項(xiàng)C若,則與可能相交,可能異面,也可能平行,故選項(xiàng)C不正確.選項(xiàng)D.若,則與可能相交,可能平行,故選項(xiàng)D不正確.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、20【解析】根據(jù)頻率分布直方圖求出成績?cè)谶@組的頻率,從而可得出答案.【詳解】解:由頻率分布直方圖可知,成績?cè)谶@組的頻率為,所以成績?cè)谶@組的學(xué)生人數(shù)為(人).故答案為:20.14、.【解析】利用空間向量夾角公式進(jìn)行求解即可.【詳解】取CD的中點(diǎn)O,以O(shè)為原點(diǎn),以CD所在直線為x軸,以底面內(nèi)過點(diǎn)O且與CD垂直的直線為y軸,以過點(diǎn)O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:15、【解析】根據(jù)離心率得出,結(jié)合得出關(guān)系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率,即,又,即,則,故此雙曲線的漸近線方程為.故答案為:.16、【解析】利用裂項(xiàng)相消法求和即可.【詳解】解:因?yàn)?,所?故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)利用正弦定理邊化角,然后可解;(2)利用余弦定理求出c,然后檢驗(yàn)可得.【小問1詳解】,即或【小問2詳解】因?yàn)槭卿J角三角形,所以因?yàn)樗杂捎嘞叶ɡ淼茫杭?,解得或若,則,所以,不滿足題意;若,因?yàn)?,且,所以,此時(shí)是銳角三角形.所以.18、(1)證明見解析(2)【解析】(1)證明垂直于平面BED內(nèi)的兩條相交直線,即可得到答案;(2)分別以O(shè)B,OC,OE為x軸,y軸,z軸,建立直角坐標(biāo)系,平面FAC的一個(gè)法向量為,代入向量的夾角公式,即可得到答案;【小問1詳解】∵ABCD為菱形,∴,設(shè)AC與BD的交點(diǎn)為O,則OE為的中位線,∴.由題意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小問2詳解】∵ABCD為菱形,,∴為正三角形,∴.∵平面ABCD,∴與平面ABCD所成角,由,得,所以.如圖,分別以O(shè)B,OC,OE為x軸,y軸,z軸,建立直角坐標(biāo)系,則,,,,,,,設(shè)平面FAC的法向量為,則由可得,取,故可得平面FAC的一個(gè)法向量為,記直線與平面FAC的夾角為,則19、(1);(2).【解析】(1)由題可得,然后利用導(dǎo)數(shù)的幾何意義即求;(2)由題可得切點(diǎn)到直線的距離最小,即得.【小問1詳解】∵函數(shù),∴的定義域?yàn)?,,∴在處切線的斜率為,由切線方程可知切點(diǎn)為,而切點(diǎn)也在函數(shù)圖象上,解得,∴的解析式為;【小問2詳解】由于直線與直線平行,直線與函數(shù)在處相切,所以切點(diǎn)到直線的距離最小,最小值為,故函數(shù)圖象上的點(diǎn)到直線的距離的最小值為.20、(1)(2)存在,【解析】(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)直線,聯(lián)立直線方程和橢圓方程,消元后利用韋達(dá)定理可用表示,從而可求的值.【小問1詳解】據(jù)題意,得,∴,∴所求橢圓M的標(biāo)準(zhǔn)方程為【小問2詳解】據(jù)(1)求解知,點(diǎn)F坐標(biāo)為若直線的斜率存在,且不等于0,設(shè)直線據(jù)得設(shè),則,∴同理可求知,∴,∴,即此時(shí)存滿足題設(shè);若直線的斜率不存在,則;若直線的斜率為0,則,此時(shí)若,則綜上,存在實(shí)數(shù),且使21、(1)(2)【解析】(1)利用△∽△構(gòu)造齊次方程,求出離心率,再利用焦距即可求出橢圓方程;(2)將直線方程與橢圓方程聯(lián)立利用韋達(dá)定理求出和,利用幾何關(guān)系可知,即可得,將韋達(dá)定理代入化簡即可求得點(diǎn)坐標(biāo).【小問1詳解】∵橢圓的焦距為,∴,即,軸,∴,則,由,,則△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,則橢圓的標(biāo)準(zhǔn)方程為,【小問2詳解】設(shè)直線的方程為,且,將直線方程與橢圓方程聯(lián)立得,,則,,∵,∴,∴,∴,∴,即.22、(1),(2)【解析】(1)由題意,列出關(guān)于a,b,c的方程組求解即可得答案;(2)設(shè)M(x1,y1),N(x2,y2),線段MN的中點(diǎn)(x0,y0),則,作差可得①,又線段MN的垂直平分線過點(diǎn)A(0,1),則②,聯(lián)立直線MN與橢圓的方程,可得﹣t2+1+4k2>0(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年客運(yùn)資格專業(yè)能力考試試題
- 寫字樓租賃環(huán)保達(dá)標(biāo)協(xié)議模板
- 黃鱔養(yǎng)殖合伙協(xié)議
- 工程砌墻工藝標(biāo)準(zhǔn)協(xié)議模板
- 政府購買專利申請(qǐng)服務(wù)協(xié)議
- 農(nóng)產(chǎn)品買賣協(xié)議
- 小學(xué)2024年春季開學(xué)“安全教育第一課”小結(jié)工作總結(jié)
- 老年衣物洗滌合同
- 食品添加劑代加工生產(chǎn)合同
- 參觀接待方案
- 窗簾采購項(xiàng)目采購需求
- 意大利時(shí)尚之都1
- 2024年焊工(初級(jí))證考試題庫及答案
- 廉潔風(fēng)險(xiǎn)點(diǎn)及控制措施
- 2024年廣西來賓產(chǎn)業(yè)投資集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 項(xiàng)目管理甘特圖課件
- 2024年高校教師資格證題庫含答案(典型題)
- 2024年甘肅省普通高中信息技術(shù)會(huì)考試題(含24套)
- 新收入準(zhǔn)則深度解讀和案例分析以及稅會(huì)差異分析
- 陶瓷專利導(dǎo)航分析報(bào)告
- 第3課《美麗的川西高原》課件
評(píng)論
0/150
提交評(píng)論