版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年浙江教育綠色評價聯(lián)盟高二上數(shù)學期末預測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點M在圓上,點N在直線上,則|MN|的最小值是()A. B.C. D.12.某研究所為了研究近幾年中國留學生回國人數(shù)的情況,對2014至2018年留學生回國人數(shù)進行了統(tǒng)計,數(shù)據(jù)如下表:年份20142015201620172018年份代碼12345留學生回國人數(shù)/萬36.540.943.348.151.9根據(jù)上述統(tǒng)計數(shù)據(jù)求得留學生回國人數(shù)(單位:萬)與年份代碼滿足的線性回歸方程為,利用回歸方程預測年留學生回國人數(shù)為()A.63.14萬 B.64.72萬C.66.81萬 D.66.94萬3.在空間四邊形中,,,,且,則()A. B.C. D.4.以下四個命題中,正確的是()A.若,則三點共線B.C.為直角三角形的充要條件是D.若為空間的一個基底,則構(gòu)成空間的另一個基底5.已知,,,其中,,,則()A. B.C. D.6.曲線與曲線的()A.實軸長相等 B.虛軸長相等C.焦距相等 D.漸進線相同7.等差數(shù)列的公差為2,若成等比數(shù)列,則()A.72 B.90C.36 D.458.已知向量與向量垂直,則實數(shù)x的值為()A.﹣1 B.1C.﹣6 D.69.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的m的值是()A.-1 B.0C.0.1 D.110.《萊因德紙草書》是世界上最古老的數(shù)學著作之一,書中有一道這樣的類似問題:把150個完全相同的面包分給5個人,使每個人所得面包數(shù)成等差數(shù)列,且使較大的三份面包數(shù)之和的是較小的兩份之和,則最大的那份面包數(shù)為()A.30 B.40C.50 D.6011.設(shè),是雙曲線()的左、右焦點,是坐標原點.過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.12.空間直角坐標系中,已知則點關(guān)于平面的對稱點的坐標為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則此三角形的最大邊長為___________.14.已知定點,,P是橢圓上的動點,則的的最小值為______.15.圓與圓的公共弦長為______16.如圖,長方體中,,,,,分別是,,的中點,則異面直線與所成角為__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓E的中心在坐標原點,焦點在坐標軸上,且經(jīng)過,,三點,求橢圓E的標準方程18.(12分)已知等比數(shù)列的公比,,.(1)求數(shù)列的通項公式;(2)令,若,求滿足條件的最大整數(shù)n.19.(12分)如圖1是直角梯形,以為折痕將折起,使點C到達的位置,且平面與平面垂直,如圖2(1)求異面直線與所成角的余弦值;(2)在棱上是否存在點P,使平面與平面的夾角為?若存在,則求三棱錐的體積,若不存在,則說明理由20.(12分)在平面直角坐標系xOy中,圓O以原點為圓心,且經(jīng)過點.(1)求圓O的方程;(2)若直線與圓O交于兩點A,B,求弦長.21.(12分)已知拋物線:上的點到焦點的距離為(1)求拋物線的方程;(2)設(shè)縱截距為的直線與拋物線交于,兩個不同的點,若,求直線的方程22.(10分)某校高二年級全體學生參加了一次數(shù)學測試,學校利用簡單隨機抽樣的方法從甲班、乙班各抽取五名同學的數(shù)學測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學中隨機抽出兩名,求此兩人都來自甲班的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意可知圓心,又由于線外一點到已知直線的垂線段最短,結(jié)合點到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,半徑為,所以圓心到的距離為,所以的最小值為.故選:C.2、D【解析】先求出樣本點的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結(jié)果【詳解】由題意知:,,所以樣本點的中心為,所以,解得:,可得線性回歸方程為,年對應的年份代碼為,令,則,所以預測2022年留學生回國人數(shù)為66.94萬,故選:D.3、A【解析】利用空間向量的線性運算即可求解.【詳解】..故選:A.4、D【解析】利用向量共線的推論可判斷A,利用數(shù)量積的定義可判斷B,利用充要條件的概念可判斷C,利用基底的概念可判斷D.【詳解】對于A,若,,所以三點不共線,故A錯誤;對于B,因為,故B錯誤;對于C,由可推出為直角三角形,由為直角三角形,推不出,所以為直角三角形的充分不必要條件是,故C錯誤;對于D,若為空間的一個基底,則不共面,若不能構(gòu)成空間的一個基底,設(shè),整理可得,即共面,與不共面矛盾,所以能構(gòu)成空間的另一個基底,故D正確.故選:D.5、C【解析】先令函數(shù),求導判斷函數(shù)的單調(diào)性,并作出函數(shù)的圖像,由函數(shù)的單調(diào)性判斷,再由對稱性可得.【詳解】由,則,同理,,令,則,當;當,∴在上單調(diào)遞減,單調(diào)遞增,所以,即可得,又,,由圖的對稱性可知,.故選:C6、D【解析】將曲線化為標準方程后即可求解.【詳解】化為標準方程為,由于,則兩曲線實軸長、虛軸長、焦距均不相等,而漸近線方程同為.故選:7、B【解析】由題意結(jié)合成等比數(shù)列,有即可得,進而得到、,即可求.【詳解】由題意知:,,又成等比數(shù)列,∴,解之得,∴,則,∴,故選:B【點睛】思路點睛:由其中三項成等比數(shù)列,利用等比中項性質(zhì)求項,進而得到等差數(shù)列的基本量1、由成等比,即;2、等差數(shù)列前n項和公式的應用.8、B【解析】根據(jù)數(shù)量積的坐標計算公式代入可得的值【詳解】解:向量,與向量垂直,則,由數(shù)量積的坐標公式可得:,解得,故選:【點睛】本題考查空間向量的坐標運算,以及數(shù)量積的坐標公式,屬于基礎(chǔ)題9、B【解析】計算后,根據(jù)判斷框直接判斷即可得解.【詳解】輸入,計算,判斷為否,計算,輸出.故選:B.10、C【解析】根據(jù)題意得到遞增等差數(shù)列中,,,從而化成基本量,進行計算,再計算出,得到答案.【詳解】根據(jù)題意,設(shè)遞增等差數(shù)列,首項為,公差,則所以解得所以最大項.故選:C11、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點睛:本題主要考查雙曲線的相關(guān)知識,考查了雙曲線的離心率和余弦定理的應用,屬于中檔題12、D【解析】根據(jù)空間直角坐標系的對稱性可得答案.【詳解】根據(jù)空間直角坐標系的對稱性可得關(guān)于平面的對稱點的坐標為,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】可知B對的邊最大,再用正弦定理計算即可.【詳解】利用正弦定理可知,B對的邊最大,因為,,所以,.故答案為:14、##【解析】根據(jù)橢圓的定義可知,化簡并結(jié)合基本不等式可求的的最小值.【詳解】由題可知:點,是橢圓的焦點,所以,所以,即,當且僅當時等號成立,即時等號成立.所以的最小值為,故答案為:.15、【解析】兩圓方程相減可得公共弦所在直線方程,即該直線截其中一圓求弦長即可【詳解】圓與圓兩式相減得,公共弦所在直線方程為:圓,圓心為到公共弦的距離為:公共弦長故答案為:16、【解析】以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出異面直線與所成角.【詳解】解:以為原點,為軸,為軸,為軸,建立空間直角坐標系,,0,,,0,,,2,,,1,,,,設(shè)異面直線與所成角為,,異面直線與所成角為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】分橢圓的焦點在軸上與焦點在軸上,兩種情況討論,利用待定系數(shù)法求出橢圓方程;【詳解】解:(1)當橢圓的焦點在軸上時,設(shè)其方程為(),則又點C在橢圓上,得,解得,所以橢圓E的方程為(2)當橢圓的焦點在軸上時,設(shè)其方程為(),則又點C在橢圓上,得,解得,這與矛盾綜上可知,橢圓的方程為18、(1)(2)【解析】(1)由等比數(shù)列的性質(zhì)可得,結(jié)合條件求出,得出公比,從而得出通項公式.(2)由(1)可得,再求出的前項和,從而可得出答案.【小問1詳解】由題意可知,有,,得或∴或又,∴∴【小問2詳解】,∴∴,又單調(diào)遞增,所以滿足條件的的最大整數(shù)為19、(1)(2)存在,靠近點D的三等分點.【解析】(1)由題意建立空間直接坐標系,求得的坐標,由求解;(2)假設(shè)棱上存在點P,設(shè),求得點p坐標,再求得平面PBE的一個法向量,由平面,得到為平面的一個法向量,然后由求解.【小問1詳解】解:因為,所以四邊形ABCE是平行四邊形,又,所以四邊形ABCE是菱形,,又平面與平面垂直,又平面與平面=EB,所以平面,建立如圖所示空間直接坐標系:則,所以,則,所以異面直線與所成角的余弦值是;【小問2詳解】假設(shè)棱上存在點P,使平面與平面的夾角為,設(shè),則,又,設(shè)平面PBE的一個法向量為,則,即,則,由平面,則為平面的一個法向量,所以,解得.20、(1)(2)【解析】(1)根據(jù)兩點距離公式即可求半徑,進而得圓方程;(2)根據(jù)直線與圓的弦長公式即可求解【小問1詳解】由,所以圓O的方程為;【小問2詳解】由點O到直線的距離為所以弦長21、(1);(2)【解析】(1)利用拋物線的性質(zhì)即可求解.(2)設(shè)直線方程,與拋物線聯(lián)立,利用韋達定理,即可求解.【詳解】(1)由題設(shè)知,拋物線的準線方程為,由點到焦點的距離為,得,解得,所以拋物線的標準方程為(2)設(shè),,顯然直線的斜率存在,故設(shè)直線的方程為,聯(lián)立消去得,由得,即所以,又因為,,所以,所以,即,解得,滿足,所以直線的方程為22、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學中隨機抽出兩名,用列舉法寫出基本事件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025海南省建筑安全員C證考試題庫
- 貴陽人文科技學院《自然地理與人文地理學》2023-2024學年第一學期期末試卷
- 廣州珠江職業(yè)技術(shù)學院《信息管理學基礎(chǔ)》2023-2024學年第一學期期末試卷
- 2025年天津市建筑安全員B證考試題庫
- 2025海南建筑安全員C證考試(專職安全員)題庫附答案
- 廣州應用科技學院《裝配式建筑識圖與實務》2023-2024學年第一學期期末試卷
- 2025四川省建筑安全員A證考試題庫及答案
- 2025陜西省安全員《A證》考試題庫
- 2025甘肅省建筑安全員-C證考試(專職安全員)題庫及答案
- 2025上海建筑安全員-A證考試題庫附答案
- 有色金屬工業(yè)安裝工程質(zhì)量檢驗評定標準(共1004頁)
- 資料員崗位培訓ppt課件(PPT 36頁)
- 組織架構(gòu)圖可編輯
- 口腔材料學課件
- 工資審核流程
- 手工鎢極氬弧焊焊接工藝指導書
- 北師大七年級上數(shù)學易錯題(共8頁)
- 供應商供方履約評價表(參考模板)
- 徒步行軍pt課件
- 國家電網(wǎng)公司電網(wǎng)設(shè)備缺陷管理規(guī)定國網(wǎng)(運檢3)(文號國家電網(wǎng)企管
- 輸血科(血庫)儀器設(shè)備使用、保養(yǎng)記錄表
評論
0/150
提交評論