2023-2024學年四川省成都市龍泉驛區(qū)第一中學校數學高二上期末監(jiān)測模擬試題含解析_第1頁
2023-2024學年四川省成都市龍泉驛區(qū)第一中學校數學高二上期末監(jiān)測模擬試題含解析_第2頁
2023-2024學年四川省成都市龍泉驛區(qū)第一中學校數學高二上期末監(jiān)測模擬試題含解析_第3頁
2023-2024學年四川省成都市龍泉驛區(qū)第一中學校數學高二上期末監(jiān)測模擬試題含解析_第4頁
2023-2024學年四川省成都市龍泉驛區(qū)第一中學校數學高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年四川省成都市龍泉驛區(qū)第一中學校數學高二上期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則的最小值是()A.3 B.8C.12 D.202.已知圓柱的底面半徑是1,高是2,那么該圓柱的側面積是()A.2 B.C. D.3.將5名北京冬奧會志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個項目進行培訓,每名志愿者只分配到1個項目,每個項目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種4.設滿足則的最大值為A. B.2C.4 D.165.函數在點處的切線方程的斜率是()A. B.C. D.6.已知雙曲線的離心率為2,且與橢圓有相同的焦點,則該雙曲線的漸近線方程為()A. B.C. D.7.設雙曲線的左、右頂點分別為、,點在雙曲線上第一象限內的點,若的三個內角分別為、、且,則雙曲線的漸近線方程為()A. B.C. D.8.已知梯形中,,且,則的值為()A. B.C. D.9.已知平面直角坐標系內一動點P,滿足圓上存在一點Q使得,則所有滿足條件的點P構成圖形的面積為()A. B.C. D.10.若定義在R上的函數滿足,則不等式的解集為()A. B.C. D.11.設為可導函數,且滿足,則曲線在點處的切線的斜率是A. B.C. D.12.拋物線的準線方程是A.x=1 B.x=-1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線經過點,則__________.14.已知圓:和圓:,動圓M同時與圓及圓外切,則動圓的圓心M的軌跡方程為______.15.在等比數列中,,,若數列滿足,則數列的前項和為________16.已知等差數列的公差為1,且是和的等比中項,則前10項的和為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點到準線的距離為,過點的直線與拋物線只有一個公共點.(1)求拋物線的方程;(2)求直線的方程.18.(12分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.19.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,若問題中的存在,求實數的取值范圍;若問題中的不存在,請說明理由設等差數列的前n項和為,數列的前n項和為,___________,,,是否存在實數,對任意都有?20.(12分)如圖,在梯形中,,,四邊形為矩形,且平面,.(1)求證:平面;(2)點在線段含端點上運動,當點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.21.(12分)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,O為底面正方形ABCD對角線的交點,E為PD的中點,且PA=AD.(1)求證:PB∥平面EAC;(2)求直線BD與平面EAC所成角的正弦值.22.(10分)設Sn是等差數列{an}的前n項和,已知,S2=-3.(1)求{an}的通項公式;(2)若,求數列{bn}的前n項和Tn.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用基本不等式進行求解即可.【詳解】因為,所以,當且僅當時取等號,即當時取等號,故選:A2、D【解析】由圓柱的側面積公式直接可得.【詳解】故選:D3、C【解析】先確定有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據題意,有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個小組,有種選法;然后連同其余三人,看成四個元素,四個項目看成四個不同的位置,四個不同的元素在四個不同的位置的排列方法數有4!種,根據乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點睛】本題考查排列組合的應用問題,屬基礎題,關鍵是首先確定人數的分配情況,然后利用先選后排思想求解.4、C【解析】可行域如圖,則直線過點A(0,1)取最大值2,則的最大值為4,選C.點睛:線性規(guī)劃的實質是把代數問題幾何化,即數形結合的思想.需要注意的是:一,準確無誤地作出可行域;二,畫目標函數所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數的最大或最小值會在可行域的端點或邊界上取得.5、D【解析】求解導函數,再由導數的幾何意義得切線的斜率.【詳解】求導得,由導數的幾何意義得,所以函數在處切線的斜率為.故選:D6、B【解析】求出焦點,則可得出,即可求出漸近線方程.【詳解】由橢圓可得焦點為,則設雙曲線方程為,可得,則離心率,解得,則,所以漸近線方程為.故選:B.7、B【解析】設點,其中,,求得,且有,,利用兩角和的正切公式可求得的值,進而可求得的值,即可得出該雙曲線的漸近線的方程.【詳解】易知點、,設點,其中,,且,,且,,,所以,,,因為,所以,,則,因此,該雙曲線漸近線方程為.故選:B.8、D【解析】根據共線定理、平面向量的加法和減法法則,即可求得,進而求出的值,即可求出結果.【詳解】因為,所以又,所以.故選:D.9、D【解析】先找臨界情況當PQ與圓C相切時,,進而可得滿足條件的點P形成的圖形為大圓(包括內部),即求.【詳解】當PQ與圓C相切時,,這種情況為臨界情況,當P往外時無法找到點Q使,當P往里時,可以找到Q使,故滿足條件的點P形成的圖形為大圓(包括內部),如圖,由圓,可知圓心,半徑為1,則大圓的半徑為,∴所有滿足條件的點P構成圖形的面積為.故選:D.【點睛】關鍵點點睛:本題的關鍵是找出臨界情況時點所滿足的條件,進而即可得到動點滿足條件的圖形,問題即可解決.10、B【解析】構造函數,根據題意,求得其單調性,利用函數單調性解不等式即可.【詳解】構造函數,則,故在上單調遞減;又,故可得,則,即,解得,故不等式解集為.故選:B.【點睛】本題考察利用導數研究函數單調性,以及利用函數單調性求解不等式,解決本題的關鍵是根據題意構造函數,屬中檔題.11、D【解析】由題,為可導函數,,即曲線在點處的切線的斜率是,選D【點睛】本題考查導數的定義,切線的斜率,以及極限的運算,本題解題的關鍵是對所給的極限式進行整理,得到符合導數定義的形式12、C【解析】先把拋物線方程整理成標準方程,進而求得p,再根據拋物線性質得出準線方程【詳解】解:整理拋物線方程得,∴p=∵拋物線方程開口向上,∴準線方程是y=﹣故答案為C【點睛】本題主要考查拋物線的標準方程和簡單性質.屬基礎題二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】將點代入拋物線方程即可得出答案.【詳解】解:因為拋物線經過點,所以,即.故答案為:2.14、【解析】根據動圓同時與圓及圓外切,即可得到幾何關系,再結合雙曲線的定義可得動點的軌跡方程.【詳解】由題,設動圓的半徑為,圓的半徑為,圓的半徑為,當動圓與圓,圓外切時,,,所以,因為圓心,,即,又根據雙曲線的定義,得動點的軌跡為雙曲線的上支,其中,,所以,則動圓圓心的軌跡方程是;故答案為:15、【解析】求出等比數列的通項公式,可得出的通項公式,推導出數列為等差數列,利用等差數列的求和公式即可得解.【詳解】設等比數列的公比為,則,則,所以,,則,所以,數列為等差數列,故數列的前項和為.故答案為:.16、【解析】利用等比中項及等差數列通項公式求出首項,再利用等差數列的前項和公式求出前10項的和.【詳解】設等差數列的首項為,由已知條件得,即,,解得,則.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或或.【解析】(1)根據給定條件結合p的幾何意義,直接求出p寫出方程作答.(2)直線l的斜率存在設出其方程,再與拋物線C的方程聯(lián)立,再討論計算,l斜率不存在時驗證作答.【小問1詳解】因拋物線的焦點到準線的距離為,于是得,所以拋物線的方程為.【小問2詳解】當直線的斜率存在時,設直線為,由消去y并整理得:,當時,,點是直線與拋物線唯一公共點,因此,,直線方程為,當時,,此時直線與拋物線相切,直線方程為,當直線的斜率不存在時,y軸與拋物線有唯一公共點,直線方程為,所以直線方程為為或或.18、(1)(2)【解析】(1)建立如圖所示的空間直角坐標系,用空間向量法求線面角;(2)用空間向量法求二面角【小問1詳解】以D為坐標原點,射線方向為x,y,z軸正方向建立空間直角坐標系.當時,,所以,設平面的法向量為,所以,即不妨得,,又,所以,則【小問2詳解】在長方體中,因為平面,所以平面平面,因為平面與平面交于,因為四邊形為正方形,所以,所以平面,即為平面的一個法向量,,所以,又平面的法向量為,所以.19、答案見解析【解析】由已知條件可得,假設時,取最小值,則,若補充條件是①,則可求得,代入化簡可求出的取值范圍,從而可求得答案,若補充條件是②,則可得,該數列是遞減數列,所以不存在k,使得取最小值,若補充條件是③,則可得,代入化簡可求出的取值范圍,從而可求得答案,【詳解】解:等差數列的公差為d,當時,,得,從而,當時,得,所以數列是首項為,公比為的等比數列,所以,由對任意,都有,當等差數列的前n項和存在最小值時,假設時,取最小值,所以;若補充條件是①,因為,,從而,由得,所以,由等差數列的前n項和存在最小值,則,得,又,所以.所以,故實數的取值范圍為若補充條件是②,由,即,又,所以.所以,由于該數列是遞減數列,所以不存在k,使得取最小值,故實數不存在以下為嚴格的證明:由等差數列的前n項和存在最小值,則,得,所以,所以不存在k,使得取最小值,故實數不存在若補充條件是③,由,得,又,所以,所以由等差數列的前n項和存在最小值,則,得,又,所以.所以存在,使得取最小值,所以,故實數的取值范圍為20、(1)證明見解析(2)點與點重合時,二面角的余弦值為【解析】(1)先利用平面幾何知識和余弦定理得到及各邊長度,利用線面平行的性質和判定定理得到線面垂直,再利用線線平行得到線面垂直;(2)建立空間直角坐標系,設,寫出相關點的坐標,得到相關向量的坐標,利用平面的法向量夾角求出二面角的余弦值,再通過二次函數的最值進行求解.【小問1詳解】證明:在梯形中,因為,,又因為,所以,,所以,即,解得,,所以,即.因為平面,平面,所以,而平面平面,所以平面.因為,所以平面.【小問2詳解】解:分別以直線為軸,軸,軸建立如圖所示的空間直角坐標系(如圖所示),設,則,所以,設為平面的一個法向量,由得,取,則,又是平面的一個法向量,設平面與平面所成銳二面角為,所以因為,所以當時,有最小值為,所以點與點重合時,平面與平面所成二面角最大,此時二面角的余弦值為.21、(1)證明見解析(2)【解析】(1)利用線面平行的判斷定理,證明線線平行,即可證明;(2)建立空間直角坐標系,求平面的法向量,利用公式,即可求解.【小問1詳解】連結EO,由題意可得O為BD的中點,又E是PD的中點,∴PB∥EO,又∵EO平面EAC,PB平面EAC,∴PB∥平面EAC;【小問2詳解】如圖,以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,設AD=2,則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),∴=(-2,2,0),=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論