版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆福建省南平市邵武市第四中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.沙糖桔網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對(duì)2019年這一年的收支情況,下列說法中錯(cuò)誤的是()A.月收入的最大值為90萬元,最小值為30萬元 B.這一年的總利潤(rùn)超過400萬元C.這12個(gè)月利潤(rùn)的中位數(shù)與眾數(shù)均為30 D.7月份的利潤(rùn)最大2.執(zhí)行如圖所示的程序框圖,若輸入t的取值范圍為,則輸出s的取值范圍為()A. B.C. D.3.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值是()A. B.C. D.44.若,則圖像上的點(diǎn)的切線的傾斜角滿足()A.一定為銳角 B.一定為鈍角C.可能為 D.可能為直角5.已知斜三棱柱所有棱長(zhǎng)均為2,,點(diǎn)、滿足,,則()A. B.C.2 D.6.某制藥廠為了檢驗(yàn)?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對(duì)臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用7.給出下列判斷,其中正確的是()A.三點(diǎn)唯一確定一個(gè)平面B.一條直線和一個(gè)點(diǎn)唯一確定一個(gè)平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)8.雙曲線的左焦點(diǎn)到其漸近線的距離是()A. B.C. D.9.設(shè)雙曲線的左、右頂點(diǎn)分別為、,左、右焦點(diǎn)分別為、,以為直徑的圓與雙曲線左支的一個(gè)交點(diǎn)為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.10.已知圓,圓,M,N分別是圓上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則以的最小值為()A B.C. D.11.直線與曲線相切于點(diǎn),則()A. B.C. D.12.函數(shù)在處的切線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線左、右焦點(diǎn)分別為,,點(diǎn)P是雙曲線左支上一點(diǎn)且,則______14.已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=3,且f(x)的導(dǎo)數(shù)在R上恒有<2(x∈R),則不等式f(x)<2x+1的解集為______.15.已知雙曲線的兩條漸近線的夾角為,則雙曲線的實(shí)軸長(zhǎng)為____16.在三棱錐中,點(diǎn)Р在底面ABC內(nèi)的射影為Q,若,則點(diǎn)Q定是的______心三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(1)求函數(shù)的單調(diào)區(qū)間.(2)用向量方法證明:已知直線l,a和平面,,,,求證:.18.(12分)已知圓:,定點(diǎn),Q為圓上的一動(dòng)點(diǎn),點(diǎn)P在半徑CQ上,且,設(shè)點(diǎn)P的軌跡為曲線E.(1)求曲線E的方程;(2)過點(diǎn)的直線交曲線E于A,B兩點(diǎn),過點(diǎn)H與AB垂直的直線與x軸交于點(diǎn)N,當(dāng)取最大值時(shí),求直線AB的方程.19.(12分)設(shè)命題p:,命題q:關(guān)于x的方程無實(shí)根.(1)若p為真命題,求實(shí)數(shù)m的取值范圍;(2)若為假命題,為真命題,求實(shí)數(shù)m的取值范圍20.(12分)某市共有居民60萬人,為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,,……分成9組,制成了如圖所示的頻率分布直方圖(1)求直方圖中的a值,并估計(jì)該市居民月均用水量不少于3噸的人數(shù)(單位:人);(2)估計(jì)該市居民月均用水量的眾數(shù)和中位數(shù)21.(12分)如圖,已知三棱錐的側(cè)棱,,兩兩垂直,且,,是的中點(diǎn).(1)求異面直線與所成角的余弦值;(2)求點(diǎn)到面的距離.(3)求二面角的平面角的正切值.22.(10分)已知函數(shù)(a是常數(shù)).(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)圖形和中位數(shù)、眾數(shù)的概念依次判斷選項(xiàng)即可.【詳解】A:由圖可知,月收入的最大值為90,最小值為30,故A正確;B:各個(gè)月的利潤(rùn)分別為20,30,20,10,30,30,60,40,30,30,50,30,所以總利潤(rùn)為20+30+20+10+30+30+60+40+30+30+50+30=380(萬元),故B錯(cuò)誤;C:這12個(gè)月利潤(rùn)的中位數(shù)與眾數(shù)均為30,故C正確;D:7月份的利潤(rùn)最大,為60萬元,故D正確.故選:B2、A【解析】由程序圖可得,,再分段求解函數(shù)的值域,即可求解【詳解】由程序圖可得,當(dāng)時(shí),,,當(dāng)時(shí),,,綜上所述,的取值范圍為,故選:A3、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項(xiàng)和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.4、C【解析】求出導(dǎo)函數(shù),判斷導(dǎo)數(shù)的正負(fù),從而得出結(jié)論【詳解】,時(shí),,遞減,時(shí),,遞增,而,所以切線斜率可能為正數(shù),也可能為負(fù)數(shù),還可以為0,則傾斜角可為銳角,也可為鈍角,還可以為,當(dāng)時(shí),斜率不存在,而存在,則不成立.故選:C5、D【解析】以向量為基底向量,則,根據(jù)條件由向量的數(shù)量積的運(yùn)算性質(zhì),兩邊平方可得答案.【詳解】以向量為基底向量,所以所以故選:D6、C【解析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【詳解】∵,,∴在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對(duì),由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯(cuò),由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯(cuò),由已知數(shù)據(jù)沒有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯(cuò),故選:C.7、C【解析】根據(jù)確定平面的條件可對(duì)每一個(gè)選項(xiàng)進(jìn)行判斷.【詳解】對(duì)A,如果三點(diǎn)在同一條直線上,則不能確定一個(gè)平面,故A錯(cuò)誤;對(duì)B,如果這個(gè)點(diǎn)在這條直線上,就不能確定一個(gè)平面,故B錯(cuò)誤;對(duì)C,兩條平行直線確定一個(gè)平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個(gè)平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對(duì)D,空間兩兩相交的三條直線可確定一個(gè)平面,也可確定三個(gè)平面,故D錯(cuò)誤.故選:C8、A【解析】求出雙曲線焦點(diǎn)坐標(biāo)與漸近線方程,利用點(diǎn)到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點(diǎn)坐標(biāo)為,漸近線方程為,即,因,該雙曲線的左焦點(diǎn)到漸近線的距離為.故選:A9、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進(jìn)而求出的面積【詳解】雙曲線的方程為:,,設(shè)以為直徑的圓與直線相切與點(diǎn),則,且,,∥.又為的中點(diǎn),,又,,的面積為:.故選:C10、A【解析】求出圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個(gè)圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸對(duì)稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為3,易知,當(dāng)三點(diǎn)共線時(shí),取得最小值,的最小值為圓與圓的圓心距減去兩個(gè)圓的半徑和,即:.故選:A.注意:9至12題為多選題11、A【解析】直線與曲線相切于點(diǎn),可得求得的導(dǎo)數(shù),可得,即可求得答案.【詳解】直線與曲線相切于點(diǎn)將代入可得:解得:由,解得:.可得,根據(jù)在上,解得:故故選:A.【點(diǎn)睛】本題考查了根據(jù)切點(diǎn)求參數(shù)問題,解題關(guān)鍵是掌握函數(shù)切線的定義和導(dǎo)數(shù)的求法,考查了分析能力和計(jì)算能力,屬于中檔題.12、C【解析】利用導(dǎo)數(shù)的幾何意義即可求切線方程﹒【詳解】,,,,在處的切線為:,即﹒故選:C﹒二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)雙曲線方程求出,再根據(jù)雙曲線的定義可知,即可得到、,再由正弦定理計(jì)算可得;【詳解】解:因?yàn)殡p曲線為,所以、,因?yàn)辄c(diǎn)P是雙曲線左支上一點(diǎn)且,所以,所以,,在中,由正弦定理可得,所以;故答案為:14、【解析】構(gòu)造函數(shù)g(x)=f(x)-2x-1,則原不等式可化為.利用導(dǎo)數(shù)判斷出g(x)在R上為減函數(shù),直接利用單調(diào)性解不等式即可【詳解】令g(x)=f(x)-2x-1,則g(1)=f(1)-2-1=0.所以原不等式可化為.因?yàn)?,所以g(x)在R上為減函數(shù).由解得:x>1.故答案為:.15、【解析】根據(jù)已知條件求得,由此求得實(shí)軸長(zhǎng).【詳解】由于,雙曲線的漸近線方程為,所以雙曲線的漸近線與軸夾角小于,由得,實(shí)軸長(zhǎng)故答案為:16、外【解析】由可得,故是的外心.【詳解】解:如圖,∵點(diǎn)在底面ABC內(nèi)的射影為,∴平面又∵平面、平面、平面,∴、、.在和中,,∴,∴同理可得:,故故是的外心.故答案為:外.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的單調(diào)減區(qū)間為和,單調(diào)增區(qū)間為;(2)證明見解析.【解析】(1)求出導(dǎo)函數(shù),由得增區(qū)間,由得減區(qū)間;(2)說明直線方向向量與平行的法向量垂直后可得【詳解】(1)解:定義域?yàn)镽,,,解得,.當(dāng)或時(shí),,當(dāng)時(shí),.所以的單調(diào)減區(qū)間為和,單調(diào)增區(qū)間為.(2)證明:在直線a上取非零向量,因?yàn)?,所以是直線l的方向向量,設(shè)是平面的一個(gè)法向量,因?yàn)?,所?又,所以.18、(1)(2)或【解析】(1)結(jié)合已知條件可得到點(diǎn)P在線段QF的垂直平分線上,然后利用橢圓定義即可求解;(2)結(jié)合已知條件設(shè)出直線的方程,然后聯(lián)立橢圓方程,利用弦長(zhǎng)公式求出,再設(shè)出直線NH的方程,求出N點(diǎn)坐標(biāo),進(jìn)而求出,然后表示出,再利用換元法和均值不等式求解即可.【小問1詳解】設(shè)點(diǎn)的坐標(biāo)為,∵,∴點(diǎn)P在線段QF垂直平分線上,∴,又∵,∴∴點(diǎn)P在以C,F(xiàn)為焦點(diǎn)的橢圓上,且,∴,∴曲線的方程為:.【小問2詳解】設(shè)直線AB方程為,,由,解得,,解得,由韋達(dá)定理可知,,,∴∵AB與HN垂直,∴直線NH的方程為,令,得,∴,又由,∴,∴設(shè)則∴當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,有最大值,此時(shí)滿足,故,所以直線AB的方程為:,即或.19、(1)(2)【解析】(1)解一元二次不等式,即可求得當(dāng)為真命題時(shí)的取值范圍;(2)先求得命題為真命題時(shí)的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當(dāng)為真命題時(shí),解不等式可得;(2)當(dāng)為真命題時(shí),由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點(diǎn)睛】本題考查了根據(jù)命題真假求參數(shù)的取值范圍,由復(fù)合命題真假判斷命題真假,并求參數(shù)的取值范圍,屬于基礎(chǔ)題.20、(1)a0.3,72000人;(2)眾數(shù)2.25;中位數(shù)2.04.【解析】(1)根據(jù)所有小長(zhǎng)方形面積和為1即可求得參數(shù),結(jié)合題意求得用水量不少于3噸對(duì)應(yīng)的頻率,再求頻數(shù)即可;(2)根據(jù)頻率分布直方圖直接寫出眾數(shù),根據(jù)中位數(shù)的求法,結(jié)合頻率的計(jì)算,即可容易求得結(jié)果.【小問1詳解】由頻率分布直方圖,可知:,解得;月均用水量不少于3噸的人數(shù)為:(人)【小問2詳解】由圖可估計(jì)眾數(shù)為2.25;設(shè)中位數(shù)為x噸,因?yàn)榍?組的頻率之和0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4組頻率之和0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5,由,可得,故居民月均用水量的中位數(shù)為2.04噸.21、(1);(2);(3).【解析】(1)首先以為原點(diǎn),、、分別為、、軸建立空間直角坐標(biāo)系,利用向量求;(2)首先求平面的法向量,再利用公式求解;(3)求平面的法向量為,先求,再求二面角的正切值.【詳解】(1)以為原點(diǎn),、、分別為、、軸建立空間直角坐標(biāo)系.則有、、、.,,所以異面直線與所成角的余弦為(2)設(shè)平面的法向量為,則知:;知取,又,點(diǎn)到面的距離所以點(diǎn)到面的距離為.(3)(2)中已求平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 林副產(chǎn)品購(gòu)銷合同
- 施工工程進(jìn)度保證信
- 踐行社會(huì)主義核心價(jià)值觀
- 房屋租賃合同范本完整
- 農(nóng)業(yè)技術(shù)產(chǎn)品售后服務(wù)協(xié)議
- 掛靠合作協(xié)議簡(jiǎn)單
- 沙石運(yùn)輸質(zhì)量協(xié)議書
- 鋼筋批發(fā)購(gòu)買
- 代收貨款合同書
- 房屋買賣合同的簽訂與法律糾紛處理
- AQ6111-2023個(gè)體防護(hù)裝備安全管理規(guī)范
- 教師口語(yǔ)智慧樹知到期末考試答案章節(jié)答案2024年廣州大學(xué)
- 模具報(bào)價(jià)表精簡(jiǎn)模板
- 形式發(fā)票模板 PI模板 英文版
- 初一的最美的風(fēng)景高分的作文600字
- 高考英語(yǔ)單項(xiàng)選擇題題庫(kù)題
- 檢驗(yàn)檢測(cè)機(jī)構(gòu)資質(zhì)認(rèn)定現(xiàn)場(chǎng)評(píng)審日程表及簽到表
- 完整版高低壓開關(guān)柜投標(biāo)文件技術(shù)標(biāo)
- 蘭州市行政區(qū)劃代碼表
- 管鮑之交-歷史劇劇本(共4頁(yè))
- [交流][jtag]跟我學(xué)jtag協(xié)議破解——第一彈初識(shí)jtagtap狀態(tài)機(jī)
評(píng)論
0/150
提交評(píng)論