下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一個(gè)基于圖卷積神經(jīng)網(wǎng)絡(luò)的局部密度優(yōu)化方法(文Density-basedclusteringisawidelyusedtechniqueindataminingandmachinelearning.However,traditionaldensity-basedclusteringmethodsmayfailtocapturecomplexspatialpatternsinthedata,especiallywheninvolvinghigh-dimensionalfeatures.Inthispaper,weproposealocaldensityoptimizationmethodbasedongraphconvolutionalneuralnetworks(GCNNs).TheproposedmethodutilizesthepowerofGCNNstolearnahierarchicalrepresentationofthedata,andoptimizesthelocaldensitybyincorporatingthelearnedfeaturerepresentation.Experimentalresultsonseveralreal-worlddatasetsindicatethatourproposedmethodoutperformsexistingdensity-basedclusteringtechniquesintermsofclusteringaccuracyandrobustness.Density-basedclusteringisafundamentaltechniqueinunsupervisedlearningthathasbeenextensivelystudiedandappliedinvariousdomains,suchasimagesegmentation,communitydetection,andanomalydetection.Thebasicideaofdensity-basedclusteringistogroupdatapointsthatareclosetogetherinthedensityspace,whileseparatingthosethatarefarapart.Theadvantagesofdensity-basedclusteringmethodsincludetheirabilitytohandlearbitrary-shapedclustersandnoisydata,andtheirrobustnesstooutliers.However,traditionaldensity-basedclusteringmethodsmayfailtocapturecomplexspatialpatternsinthedata,especiallywheninvolvinghigh-dimensionalfeatures.Moreover,theperformanceofdensity-basedclusteringmethodsheavilyreliesonthedefinitionofthelocaldensityandthechoiceofthedistancemetric.Recently,deeplearninghasdemonstratedremarkablesuccessinawiderangeofmachinelearningtasks,includingclustering.Inparticular,graphconvolutionalneuralnetworks(GCNNs)havegainedincreasingattentionduetotheirabilitytolearnrepresentationsofgraph-structureddata.GCNNsextendthetraditionalconvolutionoperationtothegraphdomainandallowthemodeltocapturelocalandglobalfeaturesofthegraph.Therefore,GCNNsarewell-suitedfordealingwithhigh-dimensionalandcomplexdata.Motivatedbytheadvantagesofdensity-basedclusteringandthepowerofGCNNs,weproposealocaldensityoptimizationmethodbasedonGCNNs.Specifically,ourmethodutilizesthelearnedfeaturerepresentationbyGCNNstooptimizethelocaldensityestimation,whichinturnimprovestheclusteringquality.Ourproposedmethodconsistsoftwostages:featurelearningbyGCNNsandlocaldensityoptimization.Inthefirststage,weuseaGCNNtolearnahierarchicalrepresentationofthedata.AGCNNtakesasinputagraphwithnodefeaturesandlearnsasetoffiltersthatextractlocalandglobalfeaturesofthegraph.TheoutputoftheGCNNisanewsetofnodefeaturesthatbetterrepresenttherelationshipsbetweennodesinthegraph.Thelearnedfeaturerepresentationisthenusedinthesecondstagetooptimizethelocaldensityestimation.Inthesecondstage,weusethelearnedfeaturerepresentationtoestimatethelocaldensityofeachdatapoint.Specifically,wedefineakernelfunctionthatmeasuresthesimilaritybetweentwodatapointsinthelearnedfeaturespace.Weusethiskernelfunctiontocomputethelocaldensityofeachdatapointbasedonitsneighboringpoints.Thelocaldensityisthenoptimizedbyagradientdescentalgorithm,whichaimstominimizealossfunctionthatpenalizesthedifferencebetweentheestimatedandtruelocaldensities.Weevaluatetheperformanceofourproposedmethodonseveralreal-worlddatasets,includingtheMNISThandwrittendigitsdataset,theCIFAR-10imagedataset,andtheUCIadultincomedataset.Wecompareourmethodagainsttwostate-of-the-artdensity-basedclusteringmethods,namelyDBSCANandHDBSCAN.Experimentalresultsshowthatourproposedmethodachieveshigherclusteringaccuracyandrobustnessthanthetwobaselinemethodsonalldatasets.Inparticular,theproposedmethodoutperformsthebaselinemethodswhenthedatafeaturesarehigh-dimensionalorthedatacontaincomplexpatterns.Theproposedmethodisalsomorerobusttothechoiceofthedistancemetricandthedensityparameter.Inthispaper,wehaveproposedalocaldensityoptimizationmethodbasedongraphconvolutionalneuralnetworksfordensity-basedclustering.TheproposedmethodutilizesthepowerofGCNNstolearnahierarchicalrepresentationofthedataandoptimizesthelocaldensityestimationusingthelearnedfeatures.Experimentalresultsonseveralreal-worlddatasetsdemonstratethatourproposedmethodoutper
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度美容院管理顧問服務(wù)及股權(quán)激勵(lì)合同4篇
- 基于2025年度的廣告設(shè)計(jì)合同2篇
- 二零二五年度城市軌道交通建設(shè)投資合同參考4篇
- 探索機(jī)器人技術(shù)在物流運(yùn)輸中的應(yīng)用
- 2025年度二零二五年度個(gè)人二手車輛買賣合同范本4篇
- 2025年新型生態(tài)山塘承包運(yùn)營(yíng)管理合同4篇
- 2025年度環(huán)保技術(shù)服務(wù)合同:大氣污染治理服務(wù)協(xié)議4篇
- 二零二五年度苗圃場(chǎng)地租賃與苗木種植產(chǎn)業(yè)鏈合作合同4篇
- 二零二五年果樹采摘園供應(yīng)鏈金融服務(wù)合同3篇
- 二零二五版創(chuàng)意園區(qū)全程招商代理與文化創(chuàng)意產(chǎn)業(yè)合作合同3篇
- GB/T 12723-2024單位產(chǎn)品能源消耗限額編制通則
- 2024年廣東省深圳市中考英語(yǔ)試題含解析
- GB/T 16288-2024塑料制品的標(biāo)志
- 麻風(fēng)病防治知識(shí)課件
- 建筑工程施工圖設(shè)計(jì)文件審查辦法
- 干部職級(jí)晉升積分制管理辦法
- 培訓(xùn)機(jī)構(gòu)應(yīng)急預(yù)案6篇
- 北師大版數(shù)學(xué)五年級(jí)上冊(cè)口算專項(xiàng)練習(xí)
- 應(yīng)急物資智能調(diào)配系統(tǒng)解決方案
- 2025年公務(wù)員考試時(shí)政專項(xiàng)測(cè)驗(yàn)100題及答案
- TSG ZF003-2011《爆破片裝置安全技術(shù)監(jiān)察規(guī)程》
評(píng)論
0/150
提交評(píng)論