2023-2024學年吉林省榆樹一中五校數學高二上期末調研模擬試題含解析_第1頁
2023-2024學年吉林省榆樹一中五校數學高二上期末調研模擬試題含解析_第2頁
2023-2024學年吉林省榆樹一中五校數學高二上期末調研模擬試題含解析_第3頁
2023-2024學年吉林省榆樹一中五校數學高二上期末調研模擬試題含解析_第4頁
2023-2024學年吉林省榆樹一中五校數學高二上期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年吉林省榆樹一中五校數學高二上期末調研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:和直線:,拋物線上一動點P到直線和直線的距離之和的最小值是()A. B.C. D.2.已知全集,,()A. B.C. D.3.已知橢圓和雙曲線有共同的焦點,分別是它們的在第一象限和第三象限的交點,且,記橢圓和雙曲線的離心率分別為,則等于()A.4 B.2C.2 D.34.已知點到直線:的距離為1,則等于()A. B.C. D.5.設是等差數列的前項和,已知,,則等于()A. B.C. D.6.已知函數的導函數的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數增函數 B.在區(qū)間上,函數是減函數C.為函數的極小值點 D.2為函數的極大值點7.兩條平行直線與之間的距離為()A. B.C. D.8.已知命題:△中,若,則;命題:函數,,則的最大值為.則下列命題是真命題的是()A. B.C. D.9.如圖,在四棱錐中,平面,,,則點到直線的距離為()A. B.C. D.210.若直線與平行,則實數m等于()A.0 B.1C.4 D.0或411.將直線繞著原點逆時針旋轉,得到新直線的斜率是()A. B.C. D.12.若橢圓的弦恰好被點平分,則所在的直線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的右焦點是,兩點是橢圓的左頂點和上頂點,若△是直角三角形,則橢圓的離心率是________.14.如圖,已知橢圓C1和雙曲線C2交于P1、P2、P3、P4四個點,F(xiàn)1和F2分別是C1的左右焦點,也是C2的左右焦點,并且六邊形是正六邊形.若橢圓C1的方程為,則雙曲線方程為______.15.設,復數,,若是純虛數,則的虛部為_________.16.已知雙曲線的左、右焦點分別為,,點是圓上一個動點,且線段的中點在的一條漸近線上,若,則的離心率的取值范圍是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心為,且圓經過點(1)求圓的標準方程;(2)若圓:與圓恰有兩條公切線,求實數取值范圍18.(12分)如圖,拋物線的頂點在原點,圓的圓心恰是拋物線的焦點.(1)求拋物線的方程;(2)一條直線的斜率等于2,且過拋物線焦點,它依次截拋物線和圓于、、、四點,求的值.19.(12分)若數列的前n項和滿足,(1)求的通項公式;(2)設,求數列的前n項和20.(12分)隨著生活條件的改善,人們健身意識的增強,健身器械比較暢銷,某商家為了解某種健身器械如何定價可以獲得最大利潤,現(xiàn)對這種健身器械進行試銷售.統(tǒng)計后得到其單價x(單位:百元)與銷量y(單位:個)的相關數據如下表:單價x(百元/個)3035404550日銷售量y(個)1401301109080(1)已知銷量y與單價x具有線性相關關系,求y關于x的線性回歸方程;(2)若每個健身器械的成本為25百元,試銷售結束后,請利用(1)中所求的線性回歸方程確定單價為多少百元時,銷售利潤最大?(結果保留到整數),附:對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為.參考數據:.21.(12分)為了解某市家庭用電量的情況,該市統(tǒng)計局調查了若干戶居民去年一年的月均用電量(單位:),得到如圖所示的頻率分布直方圖.(1)估計月均用電量的眾數;(2)求a的值;(3)為了既滿足居民的基本用電需求,又提高能源的利用效率,市政府計劃采用階梯電價,月均用電量不高于平均數的為第一檔,高于平均數的為第二檔,已知某戶居民月均用電量為,請問該戶居民應該按那一檔電價收費,說明理由.22.(10分)已知函數.(1)當時,證明:存在唯一的零點;(2)若,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據已知條件,結合拋物線的定義,可得點P到直線和直線的距離之和,當B,P,F(xiàn)三點共線時,最小,再結合點到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準線為,焦點為,∴點P到準線的距離PA等于點P到焦點F的距離PF,即,∴點P到直線和直線的距離之和,∴當B,P,F(xiàn)三點共線時,最小,∵,∴,∴點P到直線和直線的距離之和的最小值為故選:A2、C【解析】根據條件可得,則,結合條件即可得答案.【詳解】因,所以,則,又,所以,即.故選:C3、A【解析】設橢圓的長半軸長為,雙曲線的實半軸長為,由定義可得,,在中利用余弦定理可得,即可求出結果.【詳解】設橢圓的長半軸長為,雙曲線的實半軸長為,不妨設在第一象限,根據橢圓和雙曲線定義,得,,,由可得,又,在中,,即,化簡得,兩邊同除以,得.故選:A.【點睛】關鍵點睛:本題考查共焦點的橢圓與雙曲線的離心率問題,解題的關鍵是利用定義以及焦點三角形的關系列出齊次方程式進行求解.4、D【解析】利用點到直線的距離公式,即可求得參數的值.【詳解】因為點到直線:的距離為1,故可得,整理得,解得.故選:.5、C【解析】依題意有,解得,所以.考點:等差數列的基本概念.【易錯點晴】本題主要考查等差數列的基本概念.在解有關等差數列的問題時可以考慮化歸為和等基本量,通過建立方程(組)獲得解.即等差數列的通項公式及前項和公式,共涉及五個量,知其中三個就能求另外兩個,即知三求二,多利用方程組的思想,體現(xiàn)了用方程的思想解決問題,注意要弄準它們的值.運用方程的思想解等差數列是常見題型,解決此類問題需要抓住基本量、,掌握好設未知數、列出方程、解方程三個環(huán)節(jié),常通過“設而不求,整體代入”來簡化運算6、D【解析】根據導函數與原函數的關系可求解.【詳解】對于A,在區(qū)間,,故A不正確;對于B,在區(qū)間,,故B不正確;對于C、D,由圖可知在區(qū)間上單調遞增,在區(qū)間上單調遞減,且,所以為函數的極大值點,故C不正確,D正確.故選:D7、D【解析】由已知有,所以直線可化為,利用兩平行直線距離公式有,選D.點睛:本題主要考查兩平行直線間的距離公式,屬于易錯題.在用兩平行直線距離公式時,兩直線中的系數要相同,不然不能用此公式計算8、A【解析】由三角形內角及正弦函數的性質判斷、的真假,應用換元法令,結合對勾函數的性質確定的值域即知、的真假,根據各選項復合命題判斷真假即可.【詳解】由且,可得或,故為假命題,為真命題;令,又,則,故,∵在上遞減,∴,故的最大值為.∴為真命題,為假命題;∴為真,為假,為假,為假.故選:A.9、A【解析】如圖,以為坐標原點,建立空間直角坐標系,然后利用空間向量求解即可【詳解】因為平面,平面,平面,所以,,因為所以如圖,以為坐標原點,建立空間直角坐標系,則,,,,,即.在上的投影向量的長度為,故點到直線的距離為.故選:A10、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.11、B【解析】由題意知直線的斜率為,設其傾斜角為,將直線繞著原點逆時針旋轉,得到新直線的斜率為,化簡求值即可得到答案.【詳解】由知斜率為,設其傾斜角為,則,將直線繞著原點逆時針旋轉,則故新直線的斜率是.故選:B.12、D【解析】判斷點M與橢圓的位置關系,再借助點差法求出直線AB的斜率即可計算作答.【詳解】顯然點橢圓內,設點,依題意,,兩式相減得:,而弦恰好被點平分,即,則直線AB的斜率,直線AB:,即,所以所在的直線方程為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設易知,應用斜率的兩點式及橢圓參數關系可得,進而求橢圓離心率.【詳解】由題設,,,,又△是直角三角形,顯然,所以,可得,則,解得,又,所以.故答案為:.14、【解析】先根據橢圓的方程求得焦點坐標,然后根據為正六邊形求得點的坐標,即點在雙曲線上,然后解出方程即可【詳解】設雙曲線的方程為:根據橢圓的方程可得:又為正六邊形,則點的坐標為:則點在雙曲線上,可得:又解得:故答案為:15、【解析】由復數除法的運算法則求出,又是純虛數,可求出,從而根據共軛復數及虛部的定義即可求解.【詳解】解:因為復數,,所以,又是純虛數,所以,所以,所以所以的虛部為,故答案:.16、【解析】設,,因為點是線段中點,所以有,代入坐標求出點的軌跡為圓,因為點在漸近線上,所以圓與漸近線有公共點,利用點到直線的距離求出臨界狀態(tài)下漸近線的斜率,數形結合求出有公共點時漸近線斜率的范圍,從而求出離心率的范圍.【詳解】解:設,,因為點是線段的中點,所以有,即有,因為點在圓上,所以滿足:,代入可得:,即,所以點的軌跡是以為圓心,以1為半徑的圓,如圖所示:因為點在漸近線上,所以圓與漸近線有公共點,當兩條漸近線與圓恰好相切時為臨界點,則:圓心到漸近線的距離為,因為,所以,即,且,所以,此時,,當時,漸近線與圓有公共點,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據給定條件求出圓C的半徑,再直接寫出方程作答.(2)由給定條件可得圓C與圓O相交,由此列出不等式求解作答.【小問1詳解】依題意,圓C的半徑,所以圓的標準方程是:.【小問2詳解】圓:圓心,半徑為,因圓與圓恰有兩條公切線,則有圓O與圓C相交,即,而,因此有,解得,所以實數的取值范圍是.18、(1)圓的圓心坐標為,即拋物線的焦點為,……3分∴∴拋物線方程為……6分

由題意知直線AD的方程為…7分即代入得=0設,則,……11分∴【解析】(1)設拋物線方程為,由題意求出其焦點坐標,進而可求出結果;(2)先由題意得出直線的方程,聯(lián)立直線與拋物線方程,求出,再由為圓的直徑,即可求出結果.【詳解】(1)設拋物線方程為,圓的圓心恰是拋物線的焦點,∴.拋物線方程為:;(2)依題意直線的方程為設,,則,得,,.【點睛】本題主要考查拋物線的方程,以及直線與拋物線的位置關系;由拋物線的焦點坐標可直接求出拋物線的方程;聯(lián)立直線與拋物線方程,結合韋達定理和拋物線定義可求出弦長,進而可求出結果,屬于??碱}型.19、(1)(2)【解析】(1)根據遞推關系結合等比數列的定義可求解;(2)根據(1)化簡,利用裂項相消法求出數列的前n項和.小問1詳解】當時,,所以,即,當時,,得,則所以數列是首項為﹣1,公比為3的等比數列所以【小問2詳解】由(1)得:所以,所以20、(1);(2)確定單價為50百元時,銷售利潤最大.【解析】(1)根據參考公式和數據求出,進而求出線性回歸方程;(2)設出定價,結合(1)求出利潤,進而通過二次函數的性質求得答案.【小問1詳解】由題意,,則,,結合參考數據可得,,所以線性回歸方程為.【小問2詳解】設定價為x百元,利潤為,則,由題意,則(百元)時,最大.故確定單價為50百元時,銷售利潤最大.21、(1)175(2)0.004(3)該居民該戶居民應該按第二檔電價收費,理由見解析【解析】(1)在區(qū)間對應的小矩形最高,由此能求出眾數;(2)利用各個區(qū)間的頻率之和為1,即可求出值;(3)求出月均用電量的平均數的估計值即可判斷.【小問1詳解】由題知,月均用電量在區(qū)間內的居民最多,可以將這個區(qū)間的中點175作為眾數的估計值,所以眾數的估計值為175.【小問2詳解】由題知:,解得則的值為0.004.【小問3詳解】平均數的估計值為:,則月均用電量的平均數的估計值為,又∵∴該居民該戶居民應該按第二檔電價收費.22、(1)證明見解析;(2)【解析】(1)當時,求導得到,判斷出函數的單調性,求出最值,可證得命題成立;(2)當且時,不滿足題意,故,又定義域為,講不等式化簡,參變分離后構造新函數,求導判斷單調性并求出最值,可得實數的取值范圍【詳解】(1)函數的定義域為,當時,由,當時,,單調遞減;當時,,單調遞增;.且,故存在唯一的零點;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論