2023-2024學年北京市徐悲鴻中學數(shù)學高二上期末達標檢測模擬試題含解析_第1頁
2023-2024學年北京市徐悲鴻中學數(shù)學高二上期末達標檢測模擬試題含解析_第2頁
2023-2024學年北京市徐悲鴻中學數(shù)學高二上期末達標檢測模擬試題含解析_第3頁
2023-2024學年北京市徐悲鴻中學數(shù)學高二上期末達標檢測模擬試題含解析_第4頁
2023-2024學年北京市徐悲鴻中學數(shù)學高二上期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年北京市徐悲鴻中學數(shù)學高二上期末達標檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的前n項和為,,,則()A. B.C. D.2.等差數(shù)列的通項公式,數(shù)列,其前項和為,則等于()A. B.C. D.3.已知O為坐標原點,=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當取得最小值時,點Q的坐標為()A. B.C. D.4.在長方體中,,,則與平面所成的角的正弦值為()A. B.C. D.5.以橢圓+=1的焦點為頂點,以這個橢圓的長軸的端點為焦點的雙曲線方程是()A. B.C. D.6.函數(shù)的單調(diào)遞減區(qū)間為()A. B.C. D.7.已知是拋物線上的點,F(xiàn)是拋物線C的焦點,若,則()A1011 B.2020C.2021 D.20228.已知數(shù)列滿足,在任意相鄰兩項與(k=1,2,…)之間插入個2,使它們和原數(shù)列的項構成一個新的數(shù)列.記為數(shù)列的前n項和,則的值為()A.162 B.163C.164 D.1659.等差數(shù)列中,,則()A. B.C. D.10.過點且與原點距離最大的直線方程是()A. B.C. D.11.已知橢圓的焦點分別為,,橢圓上一點P與焦點的距離等于6,則的面積為()A.24 B.36C.48 D.6012.我國的刺繡有著悠久的歷史,如圖,(1)(2)(3)(4)為刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形個數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第個圖形包含個小正方形,則的表達式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與曲線有且僅有一個公共點.則b的取值范圍是__________14.橢圓的左、右焦點分別為,,為坐標原點,則以下說法正確的是()A.過點的直線與橢圓交于,兩點,則的周長為8B.橢圓上存在點,使得C.橢圓的離心率為D.為橢圓上一點,為圓上一點,則點,的最大距離為315.某n重伯努利試驗中,事件A發(fā)生的概率為p,事件A發(fā)生的次數(shù)記為X,,,則______16.若,,,,與,,,,,,均為等差數(shù)列,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在直三棱柱中,,,(1)求三棱柱的表面積;(2)求異面直線與所成角的大小(結(jié)果用反三角函數(shù)表示)18.(12分)某校高二年級全體學生參加了一次數(shù)學測試,學校利用簡單隨機抽樣方法從甲班、乙班各抽取五名同學的數(shù)學測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學中隨機抽出兩名,求此兩人都來自甲班的概率.19.(12分)過原點O的圓C,與x軸相交于點A(4,0),與y軸相交于點B(0,2)(1)求圓C的標準方程;(2)直線l過B點與圓C相切,求直線l的方程,并化為一般式20.(12分)已知直線,,分別求實數(shù)的值,使得:(1);(2);(3)與相交.21.(12分)已知函數(shù)(1)判斷的零點個數(shù);(2)若對任意恒成立,求的取值范圍22.(10分)已知拋物線,直線交于、兩點,且當時,.(1)求的值;(2)如圖,拋物線在、兩點處的切線分別與軸交于、,和交于,.證明:存在實數(shù),使得.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由,可得等比數(shù)列公比q=2,利用等比數(shù)列求和公式和通項公式即可求.【詳解】設等比數(shù)列的公比為q,則,.故選:A.2、D【解析】根據(jù)裂項求和法求得,再計算即可.【詳解】解:由題意得====所以.故選:D3、C【解析】設,用表示出,求得的表達式,結(jié)合二次函數(shù)的性質(zhì)求得當時,取得最小值,從而求得點的坐標.【詳解】設,則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當λ=時,取得最小值,此時==,即點Q的坐標為.故選:C4、D【解析】過點作的垂線,垂足為,由線面垂直判定可知平面,則所求角即為,由長度關系求得即可.【詳解】在平面內(nèi)過點作的垂線,垂足為,連接.,,,平面,平面,的正弦值即為所求角的正弦值,,,.故選:D.5、B【解析】根據(jù)橢圓的幾何性質(zhì)求橢圓的焦點坐標和長軸端點坐標,由此可得雙曲線的a,b,c,再求雙曲線的標準方程.【詳解】∵橢圓的方程為+=1,∴橢圓的長軸端點坐標為,,焦點坐標為,,∴雙曲線的焦點在y軸上,且a=1,c=2,∴b2=3,∴雙曲線方程為,故選:B.6、A【解析】先求定義域,再由導數(shù)小于零即可求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】由得,所以函數(shù)的定義域為,又,因為,所以由得,解得,所以函數(shù)的單調(diào)遞減區(qū)間為.故選:A.7、C【解析】結(jié)合向量坐標運算以及拋物線的定義求得正確答案.【詳解】設,因為是拋物線上的點,F(xiàn)是拋物線C的焦點,所以,準線為:,因此,所以,即,由拋物線的定義可得,所以故選:C8、C【解析】確定數(shù)列的前70項含有的前6項和64個2,從而求出前70項和.【詳解】,其中之間插入2個2,之間插入4個2,之間插入8個2,之間插入16個2,之間插入32個2,之間插入64個2,由于,,故數(shù)列的前70項含有的前6項和64個2,故故選:C9、C【解析】由等差數(shù)列的前項和公式和性質(zhì)進行求解.【詳解】由題意,得.故選:C.10、A【解析】過點且與原點O距離最遠的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠的直垂直于直線,,∴過點且與原點O距離最遠的直線的斜率為,∴過點且與原點O距離最遠的直線方程為:,即.故選:A11、A【解析】由題意可得出與、、的值,在根據(jù)橢圓定義得的值,即可得到是直角三角形,即可求出的面積.【詳解】由題意知,.根據(jù)橢圓定義可知,是直角三角形,.故選:A.12、D【解析】先分別觀察給出正方體的個數(shù)為:1,,,,總結(jié)一般性的規(guī)律,將一般性的數(shù)列轉(zhuǎn)化為特殊的數(shù)列再求解【詳解】解:根據(jù)前面四個發(fā)現(xiàn)規(guī)律:,,,,,累加得:,,故選:【點睛】本題主要考查了歸納推理,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、或.【解析】根據(jù)曲線方程得曲線的軌跡是個半圓,數(shù)形結(jié)合分析得兩種情況:(1)直線與半圓相切有一個交點;(2)直線與半圓相交于一個點,綜合兩種情況可得答案.【詳解】由曲線,可得,表示以原點為圓心,半徑為的右半圓,是傾斜角為的直線與曲線有且只有一個公共點有兩種情況:(1)直線與半圓相切,根據(jù),所以,結(jié)合圖像可得;(2)直線與半圓的上半部分相交于一個交點,由圖可知.故答案為:或.【點睛】方法點睛:處理直線與圓位置關系時,若兩方程已知或圓心到直線的距離易表達,則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達較繁瑣,則用代數(shù)法;如果或有限制,需要數(shù)形結(jié)合進行分析.14、ABD【解析】結(jié)合橢圓定義判斷A選項的正確性,結(jié)合向量數(shù)量積的坐標運算判斷B選項的正確性,直接法求得橢圓的離心率,由此判斷C選項的正確性,結(jié)合兩點間距離公式判斷D選項的正確性.【詳解】對于選項:由橢圓定義可得:,因此的周長為,所以選項正確;對于選項:設,則,且,又,,所以,,因此,解得,,故選項正確;對于選項:因為,,所以,即,所以離心率,所以選項錯誤;對于選項:設,,則點到圓的圓心的距離為,因為,所以,所以選項正確,故選:ABD15、##0.2【解析】根據(jù)二項分布的均值和方差的計算公式可求解【詳解】依題意得X服從二項分布,則,解得,故答案為:16、##【解析】由題意利用等差數(shù)列的定義和通項公式,求得要求式子的值【詳解】設等差數(shù)列,,,,的公差為,等差數(shù)列,,,,,,的公差為,則有,且,所以,則,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)利用S=2S△ABC+S側(cè),可得三棱柱ABC﹣A1B1C1的表面積S;(2)連接BC1,確定∠BA1C1就是異面直線A1B與AC所成的角(或其補角),在△A1BC1中,利用余弦定理可求結(jié)論【詳解】(1)在△ABC中,因為AB=2,AC=4,∠ABC=90°,所以BC=.S△ABC=AB×BC=2所以S=2S△ABC+S側(cè)=4+(2+2+4)×4=24+12(2)連接BC1,因為AC∥A1C1,所以∠BA1C1就是異面直線A1B與AC所成的角(或其補角)在△A1BC1中,A1B=2,BC1=2,A1C1=4,由余弦定理可得cos∠BA1C1=,所以∠BA1C1=arccos,即異面直線A1B與AC所成角的大小為arccos【點睛】本題考查三棱柱的表面積,考查線線角,解題的關鍵是正確作出線線角,屬于中檔題18、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學中隨機抽出兩名,用列舉法寫出基本事件總數(shù),再利用古典概型的概率計算公式即可求解.【小問1詳解】根據(jù)莖葉圖可知1班中位數(shù)為86,則,又∵,且故【小問2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學共有,,,,,共有6組基本事件,且每組出現(xiàn)都是等可能的記:“從86分以上(不含86分)的同學中隨機抽出兩名,兩人都來自甲班”為事件M,事件M包括:共1個基本事件,由古典概型的計算概率的公式知∴所以兩人都來自甲班的概率為19、(1);(2)【解析】(1)設圓的標準方程為:,則分別代入原點和,得到方程組,解出即可得到;(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,則分別討論斜率存在與否,運用直線與圓相切的條件:,解方程即可得到所求直線方程.【詳解】(1)設圓C的標準方程為,則分別代入原點和,得到,解得則圓的標準方程為(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,當時,到的距離為2,不合題意,舍去;當斜率存在時,設,由直線與圓相切,得到,即有,解得,故直線,即為點睛:本題考查直線與圓位置關系,考查圓的方程的求法和直線與圓相切的條件,考查運算能力,屬于中檔題;圓的方程有一般形式與標準形式,在該題中利用待定系數(shù)法將其設為標準形式,列、解出方程組即可;當直線與圓相切時等價于圓心到直線的距離等于半徑,已知直線上一點寫出直線的方程需注意斜率不存在的情形.20、(1)或(2)或(3)且【解析】(1)根據(jù)直線一般式平行的條件列式計算;(2)根據(jù)直線一般式垂直的條件列式計算;(3)根據(jù)相交和平行的關系可得答案.【小問1詳解】,,解得或又時,直線,,兩直線不重合;時,直線,,兩直線不重合;故或;【小問2詳解】,,解得或;【小問3詳解】與相交故由(1)得且.21、(1)個;(2).【解析】(1)求,利用導數(shù)判斷的單調(diào)性,結(jié)合單調(diào)性以及零點存在性定理即可求解;(2)由題意可得對任意恒成立,令,則,利用導數(shù)求的最小值即可求解.【小問1詳解】的定義域為,由可得,當時,;當時,;所以在上單調(diào)遞減,在上單調(diào)遞增,當時,,,此時在上無零點,當時,,,,且在上單調(diào)遞增,由零點存在定理可得在區(qū)間上存在個零點,綜上所述有個零點.【小問2詳解】由題意可得:對任意恒成立,即對任意恒成立,令,則,由可得:,當時,;當時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,所以,所以的取值范圍.22、(1);(2)證明見解析.【解析】(1)將代入拋物線的方程,列出韋達定理,利用弦長公式可得出關于的等式,即可解得正數(shù)的值;(2)將代入,列出韋達定理,求出兩切線方程,進而可求得點的坐標,分、兩種情況討論,在時,推導出、、重合,可得出;在時,求出的中點的坐標,利用斜率關系可得出,結(jié)合平面向量的線性運算可證得結(jié)論成立.【小問1詳解】解:將代入得,設、,則,由韋達定理可得,則,解得或(舍),故.【小問2詳解】解:將代入中得,設、,則,由韋達定理可得,對求導得,則拋物線在點處的切線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論