版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023屆云南省曲靖市陸良縣八中高三下學期第二次調研(二模)數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數滿足,其中為虛數單位,則().A. B. C. D.2.已知等比數列的前項和為,若,且公比為2,則與的關系正確的是()A. B.C. D.3.已知復數z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知,則下列不等式正確的是()A. B.C. D.5.雙曲線的漸近線方程為()A. B. C. D.6.已知,,,則的大小關系為()A. B. C. D.7.設為銳角,若,則的值為()A. B. C. D.8.已知函數,,則的極大值點為()A. B. C. D.9.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.10.若復數滿足,則()A. B. C. D.11.若各項均為正數的等比數列滿足,則公比()A.1 B.2 C.3 D.412.已知,,由程序框圖輸出的為()A.1 B.0 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.14.在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為____________.15.直線是曲線的一條切線為自然對數的底數),則實數__________.16.將函數的圖像向右平移個單位,得到函數的圖像,則函數在區(qū)間上的值域為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求不等式的解集;(2)若存在實數,使得不等式成立,求實數的取值范圍.18.(12分)已知函數.(Ⅰ)求的值;(Ⅱ)若,且,求的值.19.(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.20.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.21.(12分)設數列,的各項都是正數,為數列的前n項和,且對任意,都有,,,(e是自然對數的底數).(1)求數列,的通項公式;(2)求數列的前n項和.22.(10分)已知數列,其前項和為,滿足,,其中,,,.⑴若,,(),求證:數列是等比數列;⑵若數列是等比數列,求,的值;⑶若,且,求證:數列是等差數列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A【點睛】此題考查復數的基本運算,注意計算的準確度,屬于簡單題目.2、C【解析】
在等比數列中,由即可表示之間的關系.【詳解】由題可知,等比數列中,且公比為2,故故選:C【點睛】本題考查等比數列求和公式的應用,屬于基礎題.3、C【解析】分析:根據復數的運算,求得復數z,再利用復數的表示,即可得到復數對應的點,得到答案.詳解:由題意,復數z=2i1-i所以復數z在復平面內對應的點的坐標為(-1,-1),位于復平面內的第三象限,故選C.點睛:本題主要考查了復數的四則運算及復數的表示,其中根據復數的四則運算求解復數z是解答的關鍵,著重考查了推理與運算能力.4、D【解析】
利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質,利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.5、C【解析】
根據雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.6、A【解析】
根據指數函數與對數函數的單調性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數,所以所以,故選:A.【點睛】本題主要考查了指數函數、對數函數的單調性,利用單調性比較大小,屬于中檔題.7、D【解析】
用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關鍵是找出已知角和未知角之間的聯系.8、A【解析】
求出函數的導函數,令導數為零,根據函數單調性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區(qū)間單調遞增,在單調遞減,在單調遞增,故的極大值點為.故選:A.【點睛】本題考查利用導數求函數的極值點,屬基礎題.9、C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎題.10、C【解析】
把已知等式變形,利用復數代數形式的除法運算化簡,再由復數模的計算公式求解.【詳解】解:由,得,∴.故選C.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法,是基礎題.11、C【解析】
由正項等比數列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數列基本量的求法,屬基礎題.12、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
轉化為,利用二倍角公式可求解得,結合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.14、【解析】
利用即可建立關于的方程.【詳解】設雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,,由已知,,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關鍵是建立的方程或不等式,是一道容易題.15、【解析】
根據切線的斜率為,利用導數列方程,由此求得切點的坐標,進而求得切線方程,通過對比系數求得的值.【詳解】,則,所以切點為,故切線為,即,故.故答案為:【點睛】本小題主要考查利用導數求解曲線的切線方程有關問題,屬于基礎題.16、【解析】
根據圖像的平移變換得到函數的解析式,再利用整體思想求函數的值域.【詳解】函數的圖像向右平移個單位得,,,.故答案為:.【點睛】本題考查三角函數圖像的平移變換、值域的求解,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意整體思想的運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)將函數的解析式表示為分段函數,然后分、、三段求解不等式,綜合可得出不等式的解集;(2)求出函數的最大值,由題意得出,解此不等式即可得出實數的取值范圍.【詳解】.(1)當時,由,解得,此時;當時,由,解得,此時;當時,由,解得,此時.綜上所述,不等式的解集;(2)當時,函數單調遞增,則;當時,函數單調遞減,則,即;當時,函數單調遞減,則.綜上所述,函數的最大值為,由題知,,解得.因此,實數的取值范圍是.【點睛】本題考查含絕對值不等式的求解,同時也考查了絕對值不等式中的參數問題,考查分類討論思想的應用,考查運算求解能力,屬于中等題.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)直接代入再由誘導公式計算可得;(Ⅱ)先得到,再根據利用兩角差的余弦公式計算可得.【詳解】解:(Ⅰ);(Ⅱ)因為所以,由得,又因為,故,所以,所以.【點睛】本題考查了三角函數中的恒等變換應用,屬于中檔題.19、.【解析】
根據特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎題.20、(1)證明見解析.(2)【解析】
(1)連接AC1,BC1,結合中位線定理可證MN∥BC1,再結合線面垂直的判定定理和線面垂直的性質分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設C1到平面B1CM的距離為h,則有,結合幾何關系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點,設C1到平面B1CM的距離為h,因為MP,所以?MP,因為CM,B1C;B1M,所以所以:CM?B1M.因為,所以,解得所以點,到平面的距離為【點睛】本題主要考查面面垂直的證明以及點到平面的距離,一般證明面面垂直都用線面垂直轉化為面面垂直,而點到面的距離常用體積轉化來求,屬于中檔題21、(1),(2)【解析】
(1)當時,,與作差可得,即可得到數列是首項為1,公差為1的等差數列,即可求解;對取自然對數,則,即是以1為首項,以2為公比的等比數列,即可求解;(2)由(1)可得,再利用錯位相減法求解即可.【詳解】解:(1)因為,,①當時,,解得;當時,有,②由①②得,,又,所以,即數列是首項為1,公差為1的等差數列,故,又因為,且,取自然對數得,所以,又因為,所以是以1為首項,以2為公比的等比數列,所以,即(2)由(1)知,,所以,③,④③減去④得:,所以【點睛】本題考查由與的關系求通項公式,考查錯位相減法求數列的和.22、(1)見解析(2)(3)見解析【解析】試題分析:(1)(),所以,故數列是等比數列;(2)利用特殊值法,得,故;(3)得,所以,得,可證數列是等差數列.試題解析:(1)證明:若,則當(),所以,即,所以,又由,,得,,即,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧石化職業(yè)技術學院《審計流程實驗》2023-2024學年第一學期期末試卷
- 昆明幼兒師范高等??茖W?!渡鐣茖W名著》2023-2024學年第一學期期末試卷
- 江西傳媒職業(yè)學院《機械制造技術基礎實驗》2023-2024學年第一學期期末試卷
- 吉林師范大學博達學院《課外讀寫實踐》2023-2024學年第一學期期末試卷
- 湖南商務職業(yè)技術學院《電子線路CAD設計》2023-2024學年第一學期期末試卷
- 湖南財政經濟學院《中國民族民間舞(一)》2023-2024學年第一學期期末試卷
- 黑龍江三江美術職業(yè)學院《中文工具書》2023-2024學年第一學期期末試卷
- 重慶工業(yè)職業(yè)技術學院《經濟地理學》2023-2024學年第一學期期末試卷
- 浙江科技學院《材料綜合實驗》2023-2024學年第一學期期末試卷
- 年產2萬噸鹽酸二甲雙胍原料藥項目可行性研究報告模板-立項備案
- 噪聲監(jiān)測服務投標方案
- 2023年中考語文備考之名著閱讀《經典常談》思維導圖合集
- 2023年湘教版數學七年級下冊《整式的乘法》單元質量檢測(含答案)
- 氣柜安裝工程施工方案
- GB/T 28750-2012節(jié)能量測量和驗證技術通則
- 分子生物學本基因組及基因組學概論
- 《人工智能》全冊配套課件
- 統(tǒng)編部編版四年級道德與法治下冊優(yōu)秀課件【全冊】
- 高職大專《體育與健康》課程標準
- 12月1日世界艾滋病日預防艾滋病講座PPT珍愛生命預防艾滋病PPT課件(帶內容)
- 測量儀器自檢記錄表(全站儀)
評論
0/150
提交評論