版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
#實(shí)驗(yàn)報(bào)告支持向量機(jī)實(shí)驗(yàn)原理:支持向量機(jī)的原理和實(shí)現(xiàn)技術(shù)。。實(shí)驗(yàn)題目:對(duì)鳶尾花數(shù)據(jù)利用SVM技術(shù)進(jìn)行分類(lèi)預(yù)測(cè)。實(shí)驗(yàn)要求:把鳶尾花數(shù)據(jù)分成訓(xùn)練集和測(cè)試集,然后針對(duì)樣本SVM預(yù)測(cè)分類(lèi)實(shí)驗(yàn)題目--分析報(bào)告:data(iris)>rm(list=ls())>gc()used(Mb)gctrigger(Mb)maxused(Mb)Ncells25214313.560839432.541051522.0Vcells5284864.1838860864.0160673612.3>library(MASS)>library(MASS)>data(iris)>library(e1071)>summary(iris)Sepal.LengthSepal.WidthMin.:4.300Min.:2.0001stQu.:5.1001stQu.:2.800Median:5.800Median:3.000Mean:5.843Mean:3.0573rdQu.:6.4003rdQu.:3.300Max.:7.900Max.:4.400Petal.LengthPetal.WidthMin.:1.000Min.:0.1001stQu.:1.6001stQu.:0.300Median:4.350Median:1.300Mean:3.758Mean:1.1993rdQu.:5.1003rdQu.:1.800Max.:6.900Max.:2.500Speciessetosa:50versicolor:50virginica:50僅選擇Petal.Length和Petal.Width這兩個(gè)特征時(shí)>model<-svm(Petal.Length~Petal.Width,data=iris)>print(model)Call:svm(formula=Petal.Length~Petal.Width,data=iris)Parameters:SVM-Type:eps-regressionSVM-Kernel:radialcost:1gamma:1epsilon:0.1NumberofSupportVectors:80>summary(model)Call:svm(formula=Petal.Length~Petal.Width,data=iris)Parameters:SVM-Type:eps-regressionSVM-Kernel:radialcost:1gamma:1epsilon:0.1NumberofSupportVectors:80>svm(formula=Petal.Length~Petal.Width,data=iris)Call:svm(formula=Petal.Length~Petal.Width,data=iris)Parameters:SVM-Type:eps-regressionSVM-Kernel:radialcost:1gamma:1epsilon:0.1NumberofSupportVectors:80>predict(model,iris)12312341.4238371.4238371.4238371.42383791011121.4238371.4569131.4238371.423837171819201.6164691.4770961.4770961.477096252627281.4238371.4238371.6164691.423837333435361.4569131.4238371.4238371.423837414243441.4770961.4770961.4238372.115572495051521.4238371.4238374.4971394.675747575859604.8369863.4771784.2931204.497139656667684.2931204.4971394.6757473.47717856781.4238371.6164691.4770961.423837131415161.4569131.4569131.4238371.616469212223241.4238371.6164691.4238371.834129293031321.4238371.4238371.4238371.616469373839401.4238371.4569131.4238371.423837454647481.6164691.4770961.4238371.423837535455564.6757474.2931204.6757474.293120616263643.4771784.6757473.4771784.497139697071724.6757473.7845145.1343674.29312073747576777879804.6757474.0568294.2931204.4971394.4971394.9881834.6757473.47717881828384858687883.7845143.4771784.0568294.8369864.6757474.8369864.6757474.29312089909192939495964.2931204.2931204.0568294.4971394.0568293.4771784.2931204.0568299798991001011021031044.2931204.2931203.7845144.2931205.7523445.2771775.5403125.1343671051061071081091101111125.6463545.5403124.9881835.1343675.1343675.7523445.4144235.2771771131141151161171181191205.5403125.4144235.7604485.7228085.1343675.6463545.7228084.6757471211221231241251261271285.7228085.4144235.4144235.1343675.5403125.1343675.1343675.1343671291301311321331341351365.5403124.8369865.2771775.4144235.6463544.6757474.4971395.7228081371381391401411421431445.7604485.1343675.1343675.5403125.7604485.7228085.2771775.7228081451461471481491505.7523445.7228085.2771775.4144235.7228085.134367分割數(shù)據(jù)集>set.seed(2)>test=sample(1:nrow(iris),100)>iris.train<-iris[-test,]>iris.test<-iris[test,]>dim(iris.train);dim(iris.test)[1]505[1]1005
>model<-svm(Petal.Length~Petal.Width,data=iris.train)prediction<-predict(model,iris.test[,-1])tab<-table(predtab<-table(pred=prediction,trueris.test[,1])tabtrueed4.34.44.64.84.955.1525.4555.6575.85961.476426185233510122142221001001.514934525019011001200100000001.537794306199520001012000010001.696750649553480000011030000001.940503187907960000001000000002.247766796584170000010000000003.593325051594760000110001010013.857169576777270000001001100004.075688311422150000000001011004.254279229338620000000000220004.404109854107820000000100000004.539639007089480000000010100124.675688856047920000000000000014.824398220950480000100000000004.992496243428280000000000000005.17942227280050000000000002005.376786409977140000000000100005.569454200330490000000000000005.738170283834570000000000000005.863218184264910000000000000005.923719404515560000000000000005.92829837440344000000000000100truepred6.16.26.36.46.56.66.76.86.97.27.37.47.77.91.47642618523351000000000000001.51493452501901000000000000001.53779430619952000000000000001.69675064955348000000000000001.94050318790796000000000000002.24776679658417000000000000003.59332505159476000000000000003.85716957677727000000000000004.07568831142215100000000000004.25427922933862001101000000004.40410985410782300001000000004.53963900708948001100100000004.67568885604792001000000100004.82439822095048000000100000004.99249624342828110110100110005.1794222728005001000000001005.37678640997714000000000000015.56945420033049000000011000005.73817028383457000010000000105.86321818426491010100012000105.92371940451556001000100000005.9282983744034400100010000000>classAgreement(tab)$'diag'[1]0.02$kappa[1]-0.01554404$rand[1]0.910101$crand[1]0.05377635>tuned<-tune.svm(Petal.Length~Petal.Width,data=iris.train,gamma=10八(-6:-1),+cost=10八(1:2))>summary(tuned)Parametertuningof‘svm':samplingmethod:10-foldcrossvalidationbestparameters:gammacost0.110bestperformance:0.1490541-Detailedperformanceresults:gammacosterrordispersion11e-06103.47224882.206454121e-05103.42808442.180270331e-0410
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第7單元 工業(yè)革命和國(guó)際共產(chǎn)主義運(yùn)動(dòng)的興起(高頻選擇題50題)(解析版)
- 2018年高考語(yǔ)文試卷(新課標(biāo)Ⅰ卷)(解析卷)
- “數(shù)值分析”課程中融入AI技術(shù)的探索
- 《直播業(yè)務(wù)規(guī)劃》課件
- 銻礦綠色環(huán)保技術(shù)-洞察分析
- 土地政策效應(yīng)評(píng)估模型-洞察分析
- 油氣生產(chǎn)風(fēng)險(xiǎn)防范-洞察分析
- 影像學(xué)設(shè)備創(chuàng)新-洞察分析
- 鄉(xiāng)村振興與數(shù)字藝術(shù)-洞察分析
- 以上是根據(jù)專(zhuān)業(yè)知識(shí)和行業(yè)趨勢(shì)提出的建議研究主題希望能對(duì)您有所幫助-洞察分析
- TSG 51-2023 起重機(jī)械安全技術(shù)規(guī)程 含2024年第1號(hào)修改單
- 《正態(tài)分布理論及其應(yīng)用研究》4200字(論文)
- GB/T 45086.1-2024車(chē)載定位系統(tǒng)技術(shù)要求及試驗(yàn)方法第1部分:衛(wèi)星定位
- 浙江省杭州市錢(qián)塘區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期英語(yǔ)期末試卷
- 1古詩(shī)文理解性默寫(xiě)(教師卷)
- 廣東省廣州市越秀區(qū)2021-2022學(xué)年九年級(jí)上學(xué)期期末道德與法治試題(含答案)
- 2024-2025學(xué)年六上科學(xué)期末綜合檢測(cè)卷(含答案)
- 在線教育平臺(tái)合作合同助力教育公平
- 工地鋼板短期出租合同模板
- 女排精神課件教學(xué)課件
- 2024年湖南省公務(wù)員考試《行測(cè)》真題及答案解析
評(píng)論
0/150
提交評(píng)論