高考數(shù)學(xué)二輪復(fù)習(xí)核心專(zhuān)題講練:函數(shù)與導(dǎo)數(shù)第4講 函數(shù)與導(dǎo)數(shù)解答題 原卷版_第1頁(yè)
高考數(shù)學(xué)二輪復(fù)習(xí)核心專(zhuān)題講練:函數(shù)與導(dǎo)數(shù)第4講 函數(shù)與導(dǎo)數(shù)解答題 原卷版_第2頁(yè)
高考數(shù)學(xué)二輪復(fù)習(xí)核心專(zhuān)題講練:函數(shù)與導(dǎo)數(shù)第4講 函數(shù)與導(dǎo)數(shù)解答題 原卷版_第3頁(yè)
高考數(shù)學(xué)二輪復(fù)習(xí)核心專(zhuān)題講練:函數(shù)與導(dǎo)數(shù)第4講 函數(shù)與導(dǎo)數(shù)解答題 原卷版_第4頁(yè)
高考數(shù)學(xué)二輪復(fù)習(xí)核心專(zhuān)題講練:函數(shù)與導(dǎo)數(shù)第4講 函數(shù)與導(dǎo)數(shù)解答題 原卷版_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第4講函數(shù)與導(dǎo)數(shù)解答題目錄第一部分:知識(shí)強(qiáng)化第二部分:重難點(diǎn)題型突破突破一:分離變量法與不等式恒(能)成立問(wèn)題突破二:分類(lèi)討論法與不等式恒(能)成立問(wèn)題突破三:同構(gòu)法與不等式恒(能)成立問(wèn)題突破四:端點(diǎn)效應(yīng)與不等式恒(能)成立問(wèn)題突破五:最值定位法解決雙參不等式問(wèn)題突破六:值域法解決雙參等式問(wèn)題突破七:?jiǎn)巫兞坎坏仁阶C明角度1:構(gòu)造函數(shù),利用單調(diào)性證明不等式角度2:構(gòu)造函數(shù),利用最值證明不等式角度3:等價(jià)轉(zhuǎn)化與不等式證明角度4:超越放縮與不等式證明突破八:利用導(dǎo)數(shù)證明雙變量不等式角度1:分離雙參,構(gòu)造函數(shù)角度2:糅合雙參(比值糅合)角度3:糅合雙參(差值糅合)角度4:利用指數(shù)(對(duì)數(shù))平均不等式解決雙變量問(wèn)題第一部分:知識(shí)強(qiáng)化1、不等式恒成立(能成立)求參數(shù)范圍的類(lèi)型與解法(1)分離參數(shù)法用分離參數(shù)法解含參不等式恒成立問(wèn)題,可以根據(jù)不等式的性質(zhì)將參數(shù)分離出來(lái),得到一個(gè)一端是參數(shù),另一端是變量表達(dá)式的不等式;步驟:①分類(lèi)參數(shù)(注意分類(lèi)參數(shù)時(shí)自變量SKIPIF1<0的取值范圍是否影響不等式的方向)②轉(zhuǎn)化:若SKIPIF1<0)對(duì)SKIPIF1<0恒成立,則只需SKIPIF1<0;若SKIPIF1<0對(duì)SKIPIF1<0恒成立,則只需SKIPIF1<0.③求最值.(2)分類(lèi)討論法如果無(wú)法分離參數(shù),可以考慮對(duì)參數(shù)或自變量進(jìn)行分類(lèi)討論求解,如果是二次不等式恒成立的問(wèn)題,可以考慮二次項(xiàng)系數(shù)與判別式的方法(SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0)求解.(3)等價(jià)轉(zhuǎn)化法當(dāng)遇到SKIPIF1<0型的不等式恒成立問(wèn)題時(shí),一般采用作差法,構(gòu)造“左減右”的函數(shù)SKIPIF1<0或者“右減左”的函數(shù)SKIPIF1<0,進(jìn)而只需滿足SKIPIF1<0,或者SKIPIF1<0,將比較法的思想融入函數(shù)中,轉(zhuǎn)化為求解函數(shù)的最值的問(wèn)題.2、最值定位法解決雙參不等式問(wèn)題(1)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(3)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(4)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<03、值域法解決雙參等式問(wèn)題(任意——存在型)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立①SKIPIF1<0,求出SKIPIF1<0的值域,記為SKIPIF1<0②SKIPIF1<0求出SKIPIF1<0的值域,記為SKIPIF1<0③則SKIPIF1<0,求出參數(shù)取值范圍.4、值域法解決雙參等式問(wèn)題(存在——存在型)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立①SKIPIF1<0,求出SKIPIF1<0的值域,記為SKIPIF1<0②SKIPIF1<0求出SKIPIF1<0的值域,記為SKIPIF1<0③則SKIPIF1<0,求出參數(shù)取值范圍.5、兩個(gè)超越不等式:(注意解答題需先證明后使用)(1)對(duì)數(shù)型超越放縮:SKIPIF1<0(SKIPIF1<0)SKIPIF1<0上式(1)中等號(hào)右邊只取第一項(xiàng)得:SKIPIF1<0SKIPIF1<0結(jié)論①用SKIPIF1<0替換上式結(jié)論①中的SKIPIF1<0得:SKIPIF1<0SKIPIF1<0結(jié)論②對(duì)于結(jié)論②左右兩邊同乘“SKIPIF1<0”得SKIPIF1<0,用SKIPIF1<0替換“SKIPIF1<0”得:SKIPIF1<0(SKIPIF1<0)SKIPIF1<0結(jié)論③(2)指數(shù)型超越放縮:SKIPIF1<0(SKIPIF1<0)SKIPIF1<0上式(2)中等號(hào)右邊只取前2項(xiàng)得:SKIPIF1<0SKIPIF1<0結(jié)論①用SKIPIF1<0替換上式結(jié)論①中的SKIPIF1<0得:SKIPIF1<0SKIPIF1<0結(jié)論②當(dāng)SKIPIF1<0時(shí),對(duì)于上式結(jié)論②SKIPIF1<0SKIPIF1<0結(jié)論③當(dāng)SKIPIF1<0時(shí),對(duì)于上式結(jié)論②SKIPIF1<0SKIPIF1<0結(jié)論④6、指數(shù)不等式法在對(duì)數(shù)均值不等式中,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,根據(jù)對(duì)數(shù)均值不等式有如下關(guān)系:SKIPIF1<07、對(duì)數(shù)均值不等式法兩個(gè)正數(shù)SKIPIF1<0和SKIPIF1<0的對(duì)數(shù)平均定義:SKIPIF1<0對(duì)數(shù)平均與算術(shù)平均、幾何平均的大小關(guān)系:SKIPIF1<0(此式記為對(duì)數(shù)平均不等式)取等條件:當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立.第二部分:重難點(diǎn)題型突破突破一:分離變量法與不等式恒(能)成立問(wèn)題1.(2022·湖南·寧鄉(xiāng)市教育研究中心模擬預(yù)測(cè))已知SKIPIF1<0,若對(duì)任意的SKIPIF1<0不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的最小值為_(kāi)______.2.(2022·黑龍江·高二期中)已知SKIPIF1<0,若存在SKIPIF1<0,使不等式SKIPIF1<0,對(duì)于SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是______.3.(2022·貴州畢節(jié)·三模(文))函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0零點(diǎn)的個(gè)數(shù);(2)若對(duì)SKIPIF1<0,SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.4.(2022·廣東·潮州市瓷都中學(xué)三模)已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上恒成立,求整數(shù)SKIPIF1<0的最大值.5.(2022·江蘇·無(wú)錫市第一中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0).(1)當(dāng)SKIPIF1<0時(shí),對(duì)于函數(shù)SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0成立,求滿足條件的最大整數(shù)SKIPIF1<0;(SKIPIF1<0)(2)設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.6.(2022·天津市寧河區(qū)蘆臺(tái)第一中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的極值;(2)令SKIPIF1<0是函數(shù)SKIPIF1<0圖像上任意兩點(diǎn),且滿足SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)若SKIPIF1<0,使SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的最大值.突破二:分類(lèi)討論法與不等式恒(能)成立問(wèn)題1.(2022·內(nèi)蒙古·霍林郭勒市第一中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若對(duì)于SKIPIF1<0,SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值集合是_______.2.(2022·天津市瑞景中學(xué)高三期中)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)設(shè)SKIPIF1<0,若對(duì)任意的SKIPIF1<0,SKIPIF1<0恒成立,求SKIPIF1<0的最大值.3.(2022·北京海淀·高三期中)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)當(dāng)SKIPIF1<0時(shí),證明:函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有一個(gè)零點(diǎn);(3)若對(duì)任意SKIPIF1<0,不等式SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.4.(2022·福建福州·高二期末)已知函數(shù)SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)(0,f(0))處的切線方程;(2)若存在SKIPIF1<0,使得不等式SKIPIF1<0成立,求m的取值范圍.5.(2022·陜西·咸陽(yáng)市高新一中高二期中(理))已知函數(shù)SKIPIF1<0(1)若曲線SKIPIF1<0在SKIPIF1<0和SKIPIF1<0處的切線互相平行,求SKIPIF1<0的值與函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)設(shè)SKIPIF1<0,若對(duì)任意SKIPIF1<0,均存在SKIPIF1<0,使得SKIPIF1<0,求SKIPIF1<0的取值范圍.6.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0的極小值為_(kāi)__________;若函數(shù)SKIPIF1<0,對(duì)于任意的SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是___________.突破三:同構(gòu)法與不等式恒(能)成立問(wèn)題1.(2022·廣西北?!ひ荒#ɡ恚┮阎瘮?shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求過(guò)點(diǎn)SKIPIF1<0且和曲線SKIPIF1<0相切的直線方程;(2)若對(duì)任意實(shí)數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.2.(2022·江蘇·南京師大蘇州實(shí)驗(yàn)學(xué)校高三階段練習(xí))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的極值;(2)當(dāng)SKIPIF1<0時(shí),是否存在正實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0成立(SKIPIF1<0為自然對(duì)數(shù)的底數(shù))?若存在,求SKIPIF1<0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.3.(2022·江西·蘆溪中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;(2)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0.突破四:端點(diǎn)效應(yīng)與不等式恒(能)成立問(wèn)題1.設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0.(Ⅰ)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的零點(diǎn);(Ⅱ)若對(duì)任意SKIPIF1<0,SKIPIF1<0,恒有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍.2.(2021·河南大學(xué)附屬中學(xué)高三階段練習(xí)(文))已知函數(shù)f(x)=ax﹣a+lnx.(1)討論函數(shù)f(x)的單調(diào)性;(2)當(dāng)x∈(1,+∞)時(shí),曲線y=f(x)總在曲線y=a(x2﹣1)的下方,求實(shí)數(shù)a的取值范圍.突破五:最值定位法解決雙參不等式問(wèn)題1.(多選)(2022·福建龍巖·高二期中)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立,則a的取值可以是(

)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·江蘇省石莊高級(jí)中學(xué)高二階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,若對(duì)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立,則a的取值范圍是______.3.(2022·陜西·寶雞市金臺(tái)區(qū)教育體育局教研室高二期中(理))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,若對(duì)于任意SKIPIF1<0、SKIPIF1<0,均有SKIPIF1<0,求SKIPIF1<0的取值范圍.4.(2022·上海市楊思高級(jí)中學(xué)高三期中)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求曲線SKIPIF1<0在SKIPIF1<0處切線的方程;(2)求SKIPIF1<0的單調(diào)區(qū)間;(3)設(shè)SKIPIF1<0,若對(duì)任意SKIPIF1<0,均存在SKIPIF1<0,使得SKIPIF1<0,求SKIPIF1<0的取值范圍.5.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0處取得極值,SKIPIF1<0.(1)求SKIPIF1<0的值與SKIPIF1<0的單調(diào)區(qū)間;(2)設(shè)SKIPIF1<0,已知函數(shù)SKIPIF1<0,若對(duì)于任意SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍.6.(2022·遼寧·大連二十四中高一期中)已知函數(shù)SKIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),且SKIPIF1<0.(1)求SKIPIF1<0的值,并判斷SKIPIF1<0的單調(diào)性(不必證明);(2)設(shè)SKIPIF1<0為正數(shù),函數(shù)SKIPIF1<0,若對(duì)于任意SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0成立,求SKIPIF1<0的最大值.7.(2022·江蘇省江浦高級(jí)中學(xué)高一期中)已知二次函數(shù)SKIPIF1<0.(1)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0對(duì)SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍;(2)已知函數(shù)SKIPIF1<0,若對(duì)SKIPIF1<0,SKIPIF1<0,使不等式SKIPIF1<0成立,求SKIPIF1<0的取值范圍.突破六:值域法解決雙參等式問(wèn)題1.(多選)(2022·江蘇·常熟中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若對(duì)任意的SKIPIF1<0,均存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·山東省實(shí)驗(yàn)中學(xué)高一階段練習(xí))設(shè)函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0)的定義域的交集為D,集合M是由所有具有性質(zhì):“對(duì)任意的SKIPIF1<0,都有SKIPIF1<0”的函數(shù)SKIPIF1<0組成的集合.(1)判斷函數(shù)SKIPIF1<0,SKIPIF1<0是不是集合M中的元素?并說(shuō)明理由;(2)設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,若對(duì)任意SKIPIF1<0,總存在SKIPIF1<0,使SKIPIF1<0成立,求實(shí)數(shù)a的取值范圍.3.(2022·河南·新密市第一高級(jí)中學(xué)高一階段練習(xí))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0.(1)若關(guān)于SKIPIF1<0的方程SKIPIF1<0的兩根滿足一根大于1,另外一根小于1,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)已知函數(shù)SKIPIF1<0,若對(duì)任意SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.突破七:?jiǎn)巫兞坎坏仁阶C明角度1:構(gòu)造函數(shù),利用單調(diào)性證明不等式1.(2022·河南焦作·高三期中(理))已知函數(shù)SKIPIF1<0,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線在SKIPIF1<0軸上的截距為SKIPIF1<0.(1)求SKIPIF1<0的最小值;(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0.2.(2022·河南·高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0,且曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.(1)求a,b的值,并求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)證明:SKIPIF1<0.3.(2022·河南宋基信陽(yáng)實(shí)驗(yàn)中學(xué)高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0,(1)若SKIPIF1<0,求SKIPIF1<0的極值;(2)討論SKIPIF1<0的單調(diào)區(qū)間;(3)求證:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.4.(2022·廣東廣州·高二期末)設(shè)x>0,f(x)=lnx,SKIPIF1<0(1)求證:直線y=x-1與曲線y=f(x)相切;(2)判斷f(x)與g(x)的大小關(guān)系,并加以證明.角度2:構(gòu)造函數(shù),利用最值證明不等式1.(2022·山西忻州·高三階段練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求SKIPIF1<0的取值范圍;(2)若SKIPIF1<0,比較SKIPIF1<0與SKIPIF1<0的大小關(guān)系.2.(2022·云南·巍山彝族回族自治縣第二中學(xué)高二階段練習(xí))函數(shù)SKIPIF1<0.(1)求證:SKIPIF1<0;(2)求證:SKIPIF1<0.3.(2022·河南·一模(理))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.角度3:等價(jià)轉(zhuǎn)化與不等式證明1.(2022·江西景德鎮(zhèn)·三模(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的極值;(2)已知SKIPIF1<0,求證:當(dāng)SKIPIF1<0時(shí),總有SKIPIF1<0.2.(2022·全國(guó)·高三專(zhuān)題練習(xí)(文))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),討論SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0,證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.3.(2022·山東·菏澤一中高二階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0…為自然對(duì)數(shù)的底數(shù).(1)當(dāng)SKIPIF1<0時(shí),若過(guò)點(diǎn)SKIPIF1<0與函數(shù)SKIPIF1<0相切的直線有兩條,求SKIPIF1<0的取值范圍;(2)若SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.4.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的極大值點(diǎn)和極小值點(diǎn);(2)若函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0.5.(2022·廣西·欽州一中高二期中(理))已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在SKIPIF1<0處的切線方程;(2)若SKIPIF1<0,證明不等式SKIPIF1<0在SKIPIF1<0上成立.角度4:超越放縮與不等式證明1.(2022·江蘇省包場(chǎng)高級(jí)中學(xué)高三開(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0.(1)設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的極值點(diǎn),求SKIPIF1<0的值并討論SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0.2.(2022·安徽·高二期末)函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的極值;(2)當(dāng)SKIPIF1<0,且SKIPIF1<0.①證明:SKIPIF1<0有兩個(gè)極值點(diǎn);②證明:對(duì)任意的SKIPIF1<0.3.(2022·四川·成都七中高二期中(理))函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,SKIPIF1<0對(duì)一切SKIPIF1<0恒成立,求a的最大值;(2)證明:SKIPIF1<0,其中e是自然對(duì)數(shù)的底數(shù).4.(2022·四川·成都七中高二期中(文))函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,SKIPIF1<0對(duì)一切SKIPIF1<0恒成立,求a的最大值;(2)證明:SKIPIF1<0,其中e是自然對(duì)數(shù)的底數(shù).突破八:利用導(dǎo)數(shù)證明雙變量不等式角度1:分離雙參,構(gòu)造函數(shù)1.(多選)(2022·全國(guó)·高三專(zhuān)題練習(xí))若對(duì)任意的SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,則m的值可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.12.(2022·遼寧·沈陽(yáng)市第三十一中學(xué)高三階段練習(xí))SKIPIF1<0,均有SKIPIF1<0成立,則SKIPIF1<0的取值范圍為_(kāi)__________.3.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0,SKIPIF1<0(1)SKIPIF1<0處的切線與SKIPIF1<0軸平行.(1)求實(shí)數(shù)SKIPIF1<0的值及SKIPIF1<0的極值;(2)若對(duì)任意SKIPIF1<0,SKIPIF1<0SKIPIF1<0,有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍.4.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0SKIPIF1<0.(1)若函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn),求SKIPIF1<0的取值范圍;(2)證明:若SKIPIF1<0,則對(duì)于任意的SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0.角度2:糅合雙參(比值糅合)1.(2022·廣東北江實(shí)驗(yàn)學(xué)校模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)任取兩個(gè)正數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),求證:SKIPIF1<0.2.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.3.(2022

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論