版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省肥東縣高級中學(xué)2024屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,函數(shù)是滿足的偶函數(shù),且當(dāng)時,,若函數(shù)有3個零點,則實數(shù)的取值范圍是()A. B.C. D.2.用平行于圓錐底面的平面截圓錐,所得截面面積與底面面積的比是1:3,這截面把圓錐母線分成的兩段的比是(
)A.1:3 B.1:()C.1:9 D.3.?dāng)?shù)向左平移個單位,再向上平移1個單位后與的圖象重合,則A.為奇函數(shù) B.的最大值為1C.的一個對稱中心為 D.的一條對稱軸為4.在如圖的正方體中,M、N分別為棱BC和棱的中點,則異面直線AC和MN所成的角為()A. B.C. D.5.已知表示不大于的最大整數(shù),若函數(shù)在上僅有一個零點,則實數(shù)的取值范圍為()A. B.C. D.6.若-4<x<1,則()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-17.已知a>0,那么2+3a+4A.23 B.C.2+23 D.8.表示不超過x的最大整數(shù),例如,,,.若是函數(shù)的零點,則()A.1 B.2C.3 D.49.已知,則的大小關(guān)系為A. B.C. D.10.已知函數(shù),若,則實數(shù)的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示,某農(nóng)科院有一塊直角梯形試驗田,其中.某研究小組計則在該試驗田中截取一塊矩形區(qū)域試種新品種的西紅柿,點E在邊上,則該矩形區(qū)域的面積最大值為___________.12.如圖,若集合,,則圖中陰影部分表示的集合為___13.將函數(shù)的圖象向右平移個單位,再將圖象上每一點的橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象,則函數(shù)的解析式為____________14.__________.15.已知是定義在上的偶函數(shù),并滿足:,當(dāng),,則___________.16.已知sinα+cosα=,α∈(-π,0),則tanα=________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)在平面直角坐標(biāo)系中畫出函數(shù)的圖象;(不用列表,直接畫出草圖.(2)根據(jù)圖象,直接寫出函數(shù)的單調(diào)區(qū)間;(3)若關(guān)于的方程有四個解,求的取值范圍18.已知二次函數(shù).若當(dāng)時,的最大值為4,求實數(shù)的值.19.已知函數(shù)f(x)=4cos(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在區(qū)間-π620.已知是上的奇函數(shù),且(1)求的解析式;(2)判斷的單調(diào)性,并根據(jù)定義證明21.已知角是第三象限角,,求下列各式的值:(1);(2).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】把函數(shù)有3個零點,轉(zhuǎn)化為有3個不同根,畫出函數(shù)與的圖象,轉(zhuǎn)化為關(guān)于的不等式組求解即可.【題目詳解】由函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,得,函數(shù)是最小正周期為2的偶函數(shù),當(dāng)時,,函數(shù)有3個零點,即有3個不同根,畫出函數(shù)與的圖象如圖:要使函數(shù)與的圖象有3個交點,則,且,即.∴實數(shù)的取值范圍是.故選:B.2、B【解題分析】平行于底面的平面截圓錐可以得到一個小圓錐,利用它的底面與原圓錐的底面的面積之比得到相應(yīng)的母線長之比,故可得截面分母線段長所成的兩段長度之比.【題目詳解】設(shè)截面圓的半徑為,原圓錐的底面半徑為,則,所以小圓錐與原圓錐的母線長之比為,故截面把圓錐母線段分成的兩段比是.選B.【題目點撥】在平面幾何中,如果兩個三角形相似,那么它們的面積之比為相似比的平方,類似地,在立體幾何中,平行于底面的平面截圓錐所得的小圓錐與原來的圓錐的底面積之比為,體積之比為(分別為小圓錐的底面半徑和原圓錐的底面半徑).3、D【解題分析】利用函數(shù)的圖象變換規(guī)律得到的解析式,再利用正弦函數(shù)的圖象,得出結(jié)論【題目詳解】向左平移個單位,再向上平移1個單位后,可得的圖象,在根據(jù)所得圖象和的圖象重合,故,顯然,是非奇非偶函數(shù),且它的最大值為2,故排除A、B;當(dāng)時,,故不是對稱點;當(dāng)時,為最大值,故一條對稱軸為,故D正確,故選D.【題目點撥】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.利用y=sinx的對稱中心為求解,令,求得x.4、C【解題分析】根據(jù)異面直線所成角的定義,找到與直線平行并且和相交的直線,即可找到異面直線所成的角,解三角形可求得結(jié)果.【題目詳解】連接如下圖所示,分別是棱和棱的中點,,正方體中可知,是異面直線所成的角,為等邊三角形,.故選:C.【題目點撥】此題是個基礎(chǔ)題,考查異面直線所成的角,以及解決異面直線所成的角的方法(平移法)的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的思想和數(shù)形結(jié)合的思想.5、C【解題分析】根據(jù)題意寫出函數(shù)表達式為:,在上僅有一個零點分兩種情況,情況一:在第一段上有零點,,此時檢驗第二段無零點,故滿足條件;情況二,第二段有零點,以上兩種情況并到一起得到:.故答案為C.點睛:在研究函數(shù)零點時,有一種方法是把函數(shù)的零點轉(zhuǎn)化為方程的解,再把方程的解轉(zhuǎn)化為函數(shù)圖象的交點,特別是利用分離參數(shù)法轉(zhuǎn)化為動直線與函數(shù)圖象交點問題,這樣就可利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性與極值,從而得出函數(shù)的變化趨勢,得出結(jié)論.6、D【解題分析】先將轉(zhuǎn)化為,根據(jù)-4<x<1,利用基本不等式求解.【題目詳解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.當(dāng)且僅當(dāng)x-1=,即x=0時等號成立故選:D【題目點撥】本題主要考查基本不等式的應(yīng)用,還考查了轉(zhuǎn)化求解問題的能力,屬于基礎(chǔ)題.7、D【解題分析】利用基本不等式求解.【題目詳解】因為a>0,所以2+3a+4當(dāng)且僅當(dāng)3a=4a,即故選:D8、B【解題分析】利用零點存在性定理判斷的范圍,從而求得.【題目詳解】在上遞增,,所以,所以.故選:B9、D【解題分析】,且,,,故選D.10、D【解題分析】畫出圖象可得函數(shù)在實數(shù)集R上單調(diào)遞增,故由,可得,即,解得或故實數(shù)的取值范圍是.選D二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】設(shè),求得矩形面積的表達式,結(jié)合基本不等式求得最大值.【題目詳解】設(shè),,,,所以矩形的面積,當(dāng)且僅當(dāng)時等號成立.故選:12、【解題分析】圖像陰影部分對應(yīng)的集合為,,故,故填.13、【解題分析】利用函數(shù)的圖象變換規(guī)律,即可得到的解析式【題目詳解】函數(shù)的圖象向右平移個單位,可得到,再將圖象上每一點的橫坐標(biāo)縮短到原來的倍,可得到.故.【題目點撥】本題考查了三角函數(shù)圖象的平移變換,屬于基礎(chǔ)題14、1【解題分析】應(yīng)用誘導(dǎo)公式化簡求值即可.【題目詳解】原式.故答案為:1.15、5【解題分析】根據(jù)可得周期,再結(jié)合偶函數(shù),可將中的轉(zhuǎn)化到內(nèi),可得的值.【題目詳解】因為,所以,所以,即函數(shù)的一個周期為4,所以,又因為是定義在上的偶函數(shù),所以,因當(dāng),,所以,所以.故答案為:2.5.16、.【解題分析】由題意利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個象限中的符號,求得和的值,可得的值.【題目詳解】因為sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因為α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,與sinα+cosα=聯(lián)立解得sinα=-,cosα=,所以tanα=.故答案為:.【題目點撥】該題考查的是有關(guān)三角函數(shù)恒等變換化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,在解題的過程中,注意這三個式子是知一求二,屬于簡單題目.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)作圖見解析;(2)增區(qū)間為和;減區(qū)間為和;(3).【解題分析】(1)化簡函數(shù)的解析式為分段函數(shù),結(jié)合二次函數(shù)的圖象與性質(zhì),即可畫出函數(shù)的圖象;(2)由(1)中的圖象,直接寫出函數(shù)的單調(diào)區(qū)間;(3)把方程有四個解等價于函數(shù)與的圖象有四個交點,利用函數(shù)的圖象,即可求解.【題目詳解】(1)由題意,函數(shù),所以的圖象如右圖所示:(2)由(1)中的函數(shù)圖象,可得函數(shù)的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為和.(3)由方程有四個解等價于函數(shù)與的圖象有四個交點,又由函數(shù)的最小值為,結(jié)合圖象可得,即實數(shù)的取值范圍18、或.【解題分析】分函數(shù)的對稱軸和兩種情況,分別建立方程,解之可得答案.【題目詳解】二次函數(shù)的對稱軸為直線,當(dāng),即時,當(dāng)時,取得最大值4,,解得,滿足;當(dāng),即時,當(dāng)時,取得最大值4,,解得,滿足.故:實數(shù)的值為或.19、(Ⅰ)(Ⅱ)2,-1【解題分析】(Ⅰ)因為f=4=3故fx最小正周期為(Ⅱ)因為-π6≤x≤于是,當(dāng)2x+π6=π2,即x=當(dāng)2x+π6=-π6,即點睛:本題主要考查了兩角和的正弦公式,輔助角公式,正弦函數(shù)的性質(zhì),熟練掌握公式是解答本題的關(guān)鍵.20、(1)(2)見解析【解題分析】(1)由可得解;(2)利用單調(diào)性的定義證明即可.【小問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人借款權(quán)益轉(zhuǎn)讓合同模板(2024年版)版B版
- 2025年度幕墻抗風(fēng)抗震加固工程合同范本4篇
- 2025年度文化娛樂品牌授權(quán)使用許可
- 2025年度出租車司機職業(yè)操守與信息保密合同
- 2025年度墓地陵園墓地使用權(quán)購買協(xié)議3篇
- 2025年度肉類產(chǎn)品加工與銷售一體化合同3篇
- 2025年度餐飲加盟店品牌授權(quán)與維護合同3篇
- 二零二五年度寵物貓寵物用品代理銷售合同3篇
- 2025版基因編輯技術(shù)合作項目建議書編制范本3篇
- 2025年KTV主題房間租賃及定制服務(wù)協(xié)議3篇
- 成長小說智慧樹知到期末考試答案2024年
- 紅色革命故事《王二小的故事》
- 海洋工程用高性能建筑鋼材的研發(fā)
- 蘇教版2022-2023學(xué)年三年級數(shù)學(xué)下冊開學(xué)摸底考試卷(五)含答案與解析
- 英語48個國際音標(biāo)課件(單詞帶聲、附有聲國際音標(biāo)圖)
- GB/T 6892-2023一般工業(yè)用鋁及鋁合金擠壓型材
- 冷庫安全管理制度
- 2023同等學(xué)力申碩統(tǒng)考英語考試真題
- 家具安裝工培訓(xùn)教案優(yōu)質(zhì)資料
- 在雙減政策下小學(xué)音樂社團活動有效開展及策略 論文
- envi二次開發(fā)素材包-idl培訓(xùn)
評論
0/150
提交評論