版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東汕頭潮陽區(qū)2024屆數(shù)學(xué)高一上期末學(xué)業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.命題“,”的否定是()A., B.,C., D.,2.學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽出了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在元的同學(xué)有30人,則的值為A.300 B.200C.150 D.1003.某四棱錐的三視圖如圖所示,該四棱錐的表面積是A.32B.16+C.48D.4.函數(shù)的最大值與最小值分別為()A.3,-1 B.3,-2C.2,-1 D.2,-25.已知函數(shù)()的部分圖象如圖所示,則的值分別為A. B.C. D.6.函數(shù)的單調(diào)遞增區(qū)間為()A., B.,C., D.,7.已知函數(shù),,其函數(shù)圖象的一個對稱中心是,則該函數(shù)的一個單調(diào)遞減區(qū)間是()A. B.C. D.8.已知函數(shù)的零點,(),則()A. B.C. D.9.已知點P(3,4)在角的終邊上,則的值為()A B.C. D.10.函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,且,則的最小值為______12.已知向量,,且,則__________.13.若,則______14.將函數(shù)圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式為________.15.請寫出一個最小正周期為,且在上單調(diào)遞增的函數(shù)__________16.已知,,,則的最大值為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè),關(guān)于的二次不等式的解集為,集合,滿足,求實數(shù)的取值范圍.18.對于定義在上的函數(shù),如果存在實數(shù),使得,那么稱是函數(shù)的一個不動點.已知(1)當時,求的不動點;(2)若函數(shù)有兩個不動點,,且①求實數(shù)的取值范圍;②設(shè),求證在上至少有兩個不動點19.已知函數(shù)(且).(1)若函數(shù)的定義域為,求實數(shù)的取值范圍;(2)函數(shù)的定義域為,且滿足如下條件:存在,使得在上的值域為,那么就稱函數(shù)為“二倍函數(shù)”.若函數(shù)是“二倍函數(shù)”,求實數(shù)的取值范圍.20.已知函數(shù),.(1)若的定義域為,求實數(shù)的取值范圍;(2)若,函數(shù)為奇函數(shù),且對任意,存在,使得,求實數(shù)的取值范圍.21.若函數(shù)的定義域為,集合,若存在非零實數(shù)使得任意都有,且,則稱為上的-增長函數(shù).(1)已知函數(shù),函數(shù),判斷和是否為區(qū)間上的增長函數(shù),并說明理由;(2)已知函數(shù),且是區(qū)間上的-增長函數(shù),求正整數(shù)的最小值;(3)如果是定義域為的奇函數(shù),當時,,且為上的增長函數(shù),求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】利用全稱量詞的命題的否定解答即可.【題目詳解】解:因為全稱量詞的命題的否定是存在量詞的命題,命題“,”是全稱量詞的命題,所以其否定是“,”.故選:C2、D【解題分析】根據(jù)頻率分布直方圖的面積和1,可得的頻率為P=1-10(0.01+0.024+0.036)=0.3,又由,解得.選D.3、B【解題分析】由題意知原幾何體是正四棱錐,其中正四棱錐的高為2,底面是一個邊長為4的正方形,過頂點向底面做垂線,垂線段長是2,過底面的中心向長度是4的邊做垂線,連接垂足與頂點,得到直角三角形,得到斜高是2,所以四個側(cè)面積是,底面面積為,所以該四棱錐的表面積是16+,故選B點評:本題考查由三視圖求幾何體的表面積,做此題型的關(guān)鍵是正確還原幾何體及幾何體的棱的長度.4、D【解題分析】分析:將化為,令,可得關(guān)于t的二次函數(shù),根據(jù)t的取值范圍,求二次函數(shù)的最值即可.詳解:利用同角三角函數(shù)關(guān)系化簡,設(shè),則,根據(jù)二次函數(shù)性質(zhì)當時,y取最大值2,當時,y取最小值.故選D.點睛:本題考查三角函數(shù)有關(guān)的最值問題,此類問題一般分為兩類,一種是解析式化為的形式,用換元法求解;另一種是將解析式化為的形式,根據(jù)角的范圍求解.5、B【解題分析】由條件知道:均是函數(shù)的對稱中心,故這兩個值應(yīng)該是原式子分母的根,故得到,由圖像知道周期是,故,故,再根據(jù)三角函數(shù)的對稱中心得到,故如果,根據(jù),得到故答案為B點睛:根據(jù)函數(shù)的圖像求解析式,一般要考慮的是圖像中的特殊點,代入原式子;再就是一些常見的規(guī)律,分式型的圖像一般是有漸近線的,且漸近線是分母沒有意義的點;還有常用的是函數(shù)的極限值等等方法6、C【解題分析】利用正切函數(shù)的性質(zhì)求解.【題目詳解】解:令,解得,所以函數(shù)的單調(diào)遞增區(qū)間為,,故選:C7、D【解題分析】由正切函數(shù)的對稱中心得,得到,令可解得函數(shù)的單調(diào)遞減區(qū)間.【題目詳解】因為是函數(shù)的對稱中心,所以,解得因為,所以,,令,解得,當時,函數(shù)的一個單調(diào)遞減區(qū)間是故選:D【題目點撥】本題考查正切函數(shù)的圖像與性質(zhì),屬于基礎(chǔ)題.8、D【解題分析】將函數(shù)化為,根據(jù)二次函數(shù)的性質(zhì)函數(shù)的單調(diào)性,利用零點的存在性定理求出兩個零點的分布,進而得出零點的取值范圍,依次判斷選項即可.【題目詳解】由題意知,,則函數(shù)圖象的對稱軸為,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又,,,,所以,因為,,所以,所以,故A錯誤;,故B錯誤;,故C錯誤;,故D正確.故選:D9、D【解題分析】利用三角函數(shù)的定義即可求出答案.【題目詳解】因為點P(3,4)在角的終邊上,所以,,故選:D【題目點撥】本題考查了三角函數(shù)的定義,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.10、C【解題分析】由解出范圍即可.【題目詳解】由,可得,所以函數(shù)的單調(diào)遞增區(qū)間為,故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解題分析】由可知,要使取最小值,只需最小即可,故結(jié)合,求出的最小值即可求解.【題目詳解】由,,得(當且僅當時,等號成立),又因,得,即,由,,解得,即,故.因此當時,取最小值6.故答案為:6.12、【解題分析】根據(jù)共線向量的坐標表示,列出方程,即可求解.【題目詳解】由題意,向量,,因為,可得,解得.故答案為:.13、【解題分析】由二倍角公式,商數(shù)關(guān)系得,再由誘導(dǎo)公式、商數(shù)關(guān)系變形求值式,代入已知可得【題目詳解】,所以,故答案為:14、.【解題分析】由題意利用函數(shù)的圖象變換規(guī)律,即可得出結(jié)論.【題目詳解】將函數(shù)圖象上所有的點向右平行移動個單位長度,可得函數(shù)為,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),可得函數(shù)為.故答案為:.15、或(不唯一).【解題分析】根據(jù)函數(shù)最小正周期為,可構(gòu)造正弦型、余弦型或者正切型函數(shù),再結(jié)合在上單調(diào)遞增,構(gòu)造即可.【題目詳解】解:根據(jù)函數(shù)最小正周期為,可構(gòu)造正弦型、余弦型或者正切型函數(shù),再結(jié)合在上單調(diào)遞增,構(gòu)造即可,如或滿足題意故答案為:或(不唯一).16、【解題分析】由題知,進而令,,再結(jié)合基本不等式求解即可.【題目詳解】解:,當時取等,所以,故令,則,所以,當時,等號成立.所以的最大值為故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解題分析】由題意,求出方程的兩根,討論的正負,確定二次不等式的解集A的形式,然后結(jié)合數(shù)軸列出不等式求解即可得答案.【題目詳解】解:由題意,令,解得兩根為,由此可知,當時,解集,因為,所以的充要條件是,即,解得;當時,解集,因為,所以的充要條件是,即,解得;綜上,實數(shù)的取值范圍為.18、(1)的不動點為和;(2)①,②證明見解析.【解題分析】(1)當時,函數(shù),令,即可求解;(2)①由題意,得到的兩個實數(shù)根為,,設(shè),根據(jù)二次函數(shù)的圖象與性質(zhì),列出不等式即可求解;②把可化為,設(shè)的兩個實數(shù)根為,,根據(jù)是方程的實數(shù)根,得出,結(jié)合函數(shù)單調(diào)性,即可求解.【題目詳解】(1)當時,函數(shù),方程可化為,解得或,所以的不動點為和(2)①因為函數(shù)有兩個不動點,,所以方程,即的兩個實數(shù)根為,,記,則的零點為和,因為,所以,即,解得.所以實數(shù)的取值范圍為②因為方程可化為,即因為,,所以有兩個不相等的實數(shù)根設(shè)的兩個實數(shù)根為,,不妨設(shè)因為函數(shù)圖象的對稱軸為直線,且,,,所以記,因為,且,所以是方程的實數(shù)根,所以1是的一個不動點,,因為,所以,,且的圖象在上的圖象是不間斷曲線,所以,使得,又因為在上單調(diào)遞增,所以,所以是的一個不動點,綜上,在上至少有兩個不動點【題目點撥】利用函數(shù)的圖象求解方程的根的個數(shù)或研究不等式問題的策略:1、利用函數(shù)的圖象研究方程的根的個數(shù):當方程與基本性質(zhì)有關(guān)時,可以通過函數(shù)圖象來研究方程的根,方程的根就是函數(shù)與軸的交點的橫坐標,方程的根據(jù)就是函數(shù)和圖象的交點的橫坐標;2、利用函數(shù)研究不等式:當不等式問題不能用代數(shù)法求解但其與函數(shù)有關(guān)時,常將不等式問題轉(zhuǎn)化為兩函數(shù)圖象的上、下關(guān)系問題,從而利用數(shù)形結(jié)合求解.19、(1)(2)【解題分析】(1)由題意可知,對任意的,恒成立,利用參變量分離法結(jié)合指數(shù)函數(shù)的值域可求得實數(shù)的取值范圍;(2)分析可知在定義域內(nèi)單調(diào)遞增,由“二倍函數(shù)”的定義可知關(guān)于的二次方程有兩個不等的正根,可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【小問1詳解】解:的定義域為,所以,恒成立,則恒成立,,,因此,實數(shù)的取值范圍為.小問2詳解】解:當時,因為內(nèi)層函數(shù)為增函數(shù),外層函數(shù)為增函數(shù),故函數(shù)在定義域內(nèi)單調(diào)遞增,當時,因為內(nèi)層函數(shù)為減函數(shù),外層函數(shù)為減函數(shù),故函數(shù)在定義域內(nèi)單調(diào)遞增,若函數(shù)是“二倍函數(shù)”,則需滿足,即,所以,、是關(guān)于的方程的兩根,設(shè),則關(guān)于的方程有兩個不等的正根,所以,,解得,因此,實數(shù)的取值范圍是.20、(1);(2).【解題分析】(1)由函數(shù)的定義域為,得到恒成立,即恒成立,分類討論,即可求解.(2)根據(jù)題意,轉(zhuǎn)化為,利用單調(diào)性的定義,得到在R上單調(diào)遞增,求得,得出恒成立,得出恒成立,分類討論,即可求解.【題目詳解】(1)由函數(shù)定義域為,即恒成立,即恒成立,當時,恒成立,因為,所以,即;當時,顯然成立;當時,恒成立,因為,所以,綜上可得,實數(shù)的取值范圍.(2)由對任意,存在,使得,可得,設(shè),因為,所以,同理可得,所以,所以,可得,即,所以在R上單調(diào)遞增,所以,則,即恒成立,因為,所以恒成立,當時,恒成立,因為,當且僅當時等號成立,所以,所以,解得,所以;當時,顯然成立;當時,恒成立,沒有最大值,不合題意,綜上,實數(shù)的取值范圍.【題目點撥】利用函數(shù)求解方程的根的個數(shù)或研究不等式問題的策略:1、利用函數(shù)的圖象研究方程的根的個數(shù):當方程與基本性質(zhì)有關(guān)時,可以通過函數(shù)圖象來研究方程的根,方程的根就是函數(shù)與軸的交點的橫坐標,方程的根據(jù)就是函數(shù)和圖象的交點的橫坐標;2、利用函數(shù)研究不等式:當不等式問題不能用代數(shù)法求解但其與函數(shù)有關(guān)時,常將不等式問題轉(zhuǎn)化為兩函數(shù)圖象的上、下關(guān)系問題,從而利用數(shù)形結(jié)合求解.21、(1)是,不是,理由見解析;(2);(3).【解題分析】(1)利用給定定義推理判斷或者反例判斷而得;(2)把恒成立的不等式等價轉(zhuǎn)化,再求函數(shù)最小值而得解;(3)根據(jù)題設(shè)條件,寫出函數(shù)f(x)的解析式,再分段討論求得,最后證明即為所求.【題目詳解】(1)g(x)定義域R,,g(x)是,取x=-1,,h(x)不是,函數(shù)是區(qū)間上的增長函數(shù),函數(shù)不是;(2)依題意,,而n>0,關(guān)于x的一次函數(shù)是增函數(shù),x=-4時,所以n2-8n>0得n>8,從而正整數(shù)n的最小值為9;(3)依題意,,而,f(x)在區(qū)間[-a2,a2]上是遞減的,則x,x+4不能同在區(qū)間[-a2,a2]上,4>a2-(-a2)=2a2,又x∈[-2a2,0]時,f(x)≥0,x∈[0,2a2]時,f(x)≤0,若2a2<4≤4a2,當x=-2a2時,x+4∈[0,2a2],f(x+4)≤f(x)不符合要求,所以4a2<4,即-1<a<1.因為:當4a2<4時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村土地整治挖掘機施工協(xié)議
- 社會福利彩鋼板安裝合同樣本
- 學(xué)校藥品器材安全警示標識
- 實驗室事故報告流程
- 電子產(chǎn)品生產(chǎn)資產(chǎn)管理指南
- 2024年藝人演藝事業(yè)發(fā)展規(guī)劃3篇
- 油氣開采挖機設(shè)備租賃合同
- 高鐵工程預(yù)應(yīng)力施工協(xié)議
- 軌道車物料成本優(yōu)化
- 鐵路建設(shè)臨時用電服務(wù)合同
- 2024-2025學(xué)年人教版數(shù)學(xué)五年級上冊期末檢測試卷(含答案)
- 中華人民共和國統(tǒng)計法
- 工程設(shè)計-《工程勘察設(shè)計收費標準》(2002年修訂本)-完整版
- 物流系統(tǒng)仿真技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年山東交通學(xué)院
- MOOC 線性代數(shù)-同濟大學(xué) 中國大學(xué)慕課答案
- 福建省泉州市2022-2023學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測化學(xué)試題(含答案)
- 人教部編版三年級上冊語文【選擇題】專項復(fù)習(xí)訓(xùn)練練習(xí)100題
- 公司組織架構(gòu)圖(可編輯模版)
- 呼吸內(nèi)科國家臨床重點??平ㄔO(shè)項目評分標準試行
- 豐田質(zhì)量三不政策的確運用
- 在全市深化工程招投標領(lǐng)域突出問題系統(tǒng)治理工作推進會上的發(fā)言講話
評論
0/150
提交評論