2024屆河南省洛陽市孟津縣數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2024屆河南省洛陽市孟津縣數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2024屆河南省洛陽市孟津縣數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2024屆河南省洛陽市孟津縣數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2024屆河南省洛陽市孟津縣數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆河南省洛陽市孟津縣數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.一個不透明的袋中有四張完全相同的卡片,把它們分別標上數(shù)字1、2、2、1.隨機抽取一張卡片,然后放回,再隨機抽取一張卡片,則兩次抽取的卡片上數(shù)字之和為偶數(shù)的概率是()A. B.C. D.2.如圖,線段是⊙的直徑,弦,垂足為,點是上任意一點,,則的值為()A. B. C. D.3.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.34.不透明的口袋內(nèi)裝有紅球和白球和黃球共20個,這些球除顏色外其它都相同,將口袋內(nèi)的球充分攪拌均勻,從中隨機摸出一個球,記下顏色后放回,不斷重復(fù)該摸球過程,共摸取2020次球,發(fā)現(xiàn)有505次摸到白球,則口袋中白球的個數(shù)是()A.5 B.10 C.15 D.205.關(guān)于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(2,2); B.函數(shù)圖像位于第一、三象限;C.當時,函數(shù)值隨著的增大而增大; D.當時,.6.若一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點坐標為(﹣2,0),則拋物線y=ax2+bx的對稱軸為()A.直線x=1 B.直線x=﹣2 C.直線x=﹣1 D.直線x=﹣47.如圖,是的直徑,點、、在上.若,則的度數(shù)為()A. B. C. D.8.下列函數(shù)中,是反比例函數(shù)的是()A. B. C. D.9.二次函數(shù)y=x2的圖象向左平移1個單位,再向下平移3個單位后,所得拋物線的函數(shù)表達式是()A.y=+3 B.y=+3C.y=﹣3 D.y=﹣310.如圖,四邊形內(nèi)接于⊙,.若⊙的半徑為2,則的長為()A. B.4 C. D.311.如圖,四邊形ABCD是矩形,BC=4,AB=2,點N在對角線BD上(不與點B,D重合),EF,GH過點N,GH∥BC交AB于點G,交DC于點H,EF∥AB交AD于點E,交BC于點F,AH交EF于點M.設(shè)BF=x,MN=y(tǒng),則y關(guān)于x的函數(shù)圖象是()A. B.C. D.12.若2a=5b,則=(

)A. B. C.2 D.5二、填空題(每題4分,共24分)13.平行于梯形兩底的直線截梯形的兩腰,當兩交點之間的線段長度是兩底的比例中項時,我們稱這條線段是梯形的“比例中線”.在梯形ABCD中,AD//BC,AD=4,BC=9,點E、F分別在邊AB、CD上,且EF是梯形ABCD的“比例中線”,那么=_____.14.如圖所示的網(wǎng)格是正方形網(wǎng)格,△和△的頂點都是網(wǎng)格線交點,那么∠∠_________°.15.將拋物線向左平移2個單位,再向上平移1個單位后,得到的拋物線的解析式為_________________.16.如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點E是AB邊上一動點,過點E作DE⊥AB交AC邊于點D,將∠A沿直線DE翻折,點A落在線段AB上的F處,連接FC,當△BCF為等腰三角形時,AE的長為_____.17.如圖,正方形ABOC與正方形EFCD的邊OC、CD均在x軸上,點F在AC邊上,反比例函數(shù)的圖象經(jīng)過點A、E,且,則________.18.已知:∠BAC.(1)如圖,在平面內(nèi)任取一點O;(2)以點O為圓心,OA為半徑作圓,交射線AB于點D,交射線AC于點E;(3)連接DE,過點O作線段DE的垂線交⊙O于點P;(4)連接AP,DP和PE.根據(jù)以上作圖過程及所作圖形,下列四個結(jié)論中:①△ADE是⊙O的內(nèi)接三角形;②;③DE=2PE;④AP平分∠BAC.所有正確結(jié)論的序號是______________.三、解答題(共78分)19.(8分)已知關(guān)于x的方程ax2+(3﹣2a)x+a﹣3=1.(1)求證:無論a為何實數(shù),方程總有實數(shù)根.(2)如果方程有兩個實數(shù)根x1,x2,當|x1﹣x2|=時,求出a的值.20.(8分)已知關(guān)于的方程;(1)當為何值時,方程有兩個不相等的實數(shù)根;(2)若為滿足(1)的最小正整數(shù),求此時方程的兩個根,.21.(8分)已知:如圖,⊙O的直徑AB與弦CD相交于點E,且E為CD中點,過點B作CD的平行線交弦AD的延長線于點F.(1)求證:BF是⊙O的切線;(2)連結(jié)BC,若⊙O的半徑為2,tan∠BCD=,求線段AD的長.22.(10分)江華瑤族自治縣香草源景區(qū)2016年旅游收入500萬元,由于政府的重視和開發(fā),近兩年旅游收入逐年遞增,到今年2018年收入已達720萬元.(1)求這兩年香草源旅游收入的年平均增長率.(2)如果香草源旅游景區(qū)的收入一直保持這樣的平均年增長率,從2018年算起,請直接寫出n年后的收入表達式.23.(10分)已知二次函數(shù)(k是常數(shù))(1)求此函數(shù)的頂點坐標.(2)當時,隨的增大而減小,求的取值范圍.(3)當時,該函數(shù)有最大值,求的值.24.(10分)如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.(1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.25.(12分)利用一面墻(墻的長度為20m),另三邊用長58m的籬笆圍成一個面積為200m2的矩形場地.求矩形場地的各邊長?26.如圖,⊙O的弦AB、CD的延長線相交于點P,且AB=CD.求證PA=PC.

參考答案一、選擇題(每題4分,共48分)1、D【解題分析】畫樹狀圖展示所有16種等可能的結(jié)果數(shù),找出兩次抽取的卡片上數(shù)字之和為偶數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】畫樹狀圖為:共有16種等可能的結(jié)果數(shù),其中兩次抽取的卡片上數(shù)字之和為偶數(shù)的結(jié)果數(shù)為10,所以兩次抽取的卡片上數(shù)字之和為偶數(shù)的概率.故選D.【題目點撥】本題考查了列表法與樹狀圖法.利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.2、D【分析】只要證明∠CMD=△COA,求出cos∠COA即可.【題目詳解】如圖1中,連接OC,OM.設(shè)OC=r,∴,∴r=5,∵AB⊥CD,AB是直徑,∴,∴∠AOC=∠COM,∵∠CMD=∠COM,∴∠CMD=∠COA,∴cos∠CMD=cos∠COA=.【題目點撥】本題考查了圓周角定理,勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會轉(zhuǎn)化的思想思考問題.3、D【分析】找到最簡公分母,去分母后得到關(guān)于x的一元二次方程,求解后,再檢驗是否有增根問題可解.【題目詳解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,檢驗:當x=1時,x2﹣4≠0,所以x=1是原方程的解;當x=-2時,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解為x=1.故選:D.【題目點撥】本題考查了可化為一元二次方程的分式方程的解法,解答完成后要對方程的根進行檢驗,判定是否有增根產(chǎn)生.4、A【分析】估計利用頻率估計概率可估計摸到白球的概率為0.25,然后根據(jù)概率公式計算這個口袋中白球的數(shù)量.【題目詳解】設(shè)白球有x個,根據(jù)題意得:,解得:x=5,

即白球有5個,

故選A.【題目點撥】考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.5、C【解題分析】直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【題目詳解】A、關(guān)于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(2,-2),故此選項錯誤;B、關(guān)于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項錯誤;C、關(guān)于反比例函數(shù)y=-,當x>0時,函數(shù)值y隨著x的增大而增大,故此選項正確;D、關(guān)于反比例函數(shù)y=-,當x>1時,y>-4,故此選項錯誤;故選C.【題目點撥】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關(guān)函數(shù)的性質(zhì)是解題關(guān)鍵.6、C【解題分析】∵一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點坐標為(﹣2,0),∴﹣2a+b=0,即b=2a.∴拋物線y=ax2+bx的對稱軸為直線.故選C.7、C【分析】連接AD,BD,由圓周角定理可得∠ABD=25°,∠ADB=90°,從而可求得∠BAD=65°,再由圓的內(nèi)接四邊形對角互補得到∠BCD=115°.【題目詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=25°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-25°=65°,∴∠BCD=180°-65°=115°.故選C【題目點撥】本題考查圓中的角度計算,熟練運用圓周角定理和內(nèi)接四邊形的性質(zhì)是關(guān)鍵.8、B【解題分析】根據(jù)反比例函數(shù)的一般形式即可判斷.【題目詳解】A、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項錯誤;B、是一次函數(shù),正確;C、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項錯誤;D、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項錯誤.故選:B.【題目點撥】本題考查了反比例函數(shù)的定義,重點是將一般式y(tǒng)=(k≠0)轉(zhuǎn)化為y=kx?1(k≠0)的形式.9、D【分析】先求出原拋物線的頂點坐標,再根據(jù)平移,得到新拋物線的頂點坐標,即可得到答案.【題目詳解】∵原拋物線的頂點為(0,0),∴向左平移1個單位,再向下平移1個單位后,新拋物線的頂點為(﹣1,﹣1).∴新拋物線的解析式為:y=﹣1.故選:D.【題目點撥】本題主要考查二次函數(shù)圖象的平移規(guī)律,通過平移得到新拋物線的頂點坐標,是解題的關(guān)鍵.10、A【分析】圓內(nèi)接四邊形的對角互補,可得∠A,圓周角定理可得∠BOD,再利用等腰三角形三線合一、含有30°直角三角形的性質(zhì)求解.【題目詳解】連接OB、OD,過點O作OE⊥BD于點E,∵∠BOD=120°,∠BOD+∠A=180°,∴∠A=60°,∠BOD=2∠A=120°,∵OB=OD,OE⊥BD,∴∠EOD=∠BOD=60°,BD=2ED,∵OD=2,∴OE=1,ED=,∴BD=2,故選A.【題目點撥】本題考查圓內(nèi)接四邊形的對角互補、圓周角定理、等腰三角形的性質(zhì),熟悉“三線合一”是解答的關(guān)鍵.11、B【分析】求出,,y=EF?EM?NF=2?BFtan∠DBC?AEtan∠DAH,即可求解.【題目詳解】解:,y=EF﹣EM﹣NF=2﹣BFtan∠DBC﹣AEtan∠DAH=2﹣x×﹣x()=x2﹣x+2,故選:B.【題目點撥】本題考查的是動點圖象問題,涉及到二次函數(shù),此類問題關(guān)鍵是確定函數(shù)的表達式,進而求解.12、B【分析】逆用比例的基本性質(zhì)作答,即在比例里,兩個外項的積等于兩個內(nèi)項的積.【題目詳解】解:因為2a=5b,

所以a:b=5:2;所以=

故選B.【題目點撥】本題主要是靈活利用比例的基本性質(zhì)解決問題.二、填空題(每題4分,共24分)13、【分析】先利用比例中線的定義,求出EF的長度,然后由梯形ADFE相似與梯形EFCB,得到,即可得到答案.【題目詳解】解:如圖,∵EF是梯形的比例中線,∴,∴,∵AD//BC,∴梯形ADFE相似與梯形EFCB,∴;故答案為:.【題目點撥】本題考查了相似四邊形的性質(zhì),以及比例中項的定義,解題的關(guān)鍵是熟練掌握相似四邊形的性質(zhì)和比例中線的性質(zhì).14、45【分析】先利用平行線的性質(zhì)得出,然后通過勾股定理的逆定理得出為等腰直角三角形,從而可得出答案.【題目詳解】如圖,連接AD,∵∴∴∵∴∴∴故答案為45【題目點撥】本題主要考查平行線的性質(zhì)及勾股定理的逆定理,掌握勾股定理的逆定理及平行線的性質(zhì)是解題的關(guān)鍵.15、.【解題分析】∵將拋物線向左平移2個單位,再向上平移1個單位,∴拋物線的頂點(0,0)也同樣向左平移2個單位,再向上平移1個單位,得到新拋物線的的頂點(-2,1).∴平移后得到的拋物線的解析式為.16、2或或.【分析】由勾股定理求出AB,設(shè)AE=x,則EF=x,BF=1﹣2x;分三種情況討論:①當BF=BC時,列出方程,解方程即可;②當BF=CF時,F(xiàn)在BC的垂直平分線上,得出AF=BF,列出方程,解方程即可;③當CF=BC時,作CG⊥AB于G,則BG=FGBF,由射影定理求出BG,再解方程即可.【題目詳解】由翻折變換的性質(zhì)得:AE=EF.∵∠ACB=90°,AC=8,BC=6,∴AB1.設(shè)AE=x,則EF=x,BF=1﹣2x.分三種情況討論:①當BF=BC時,1﹣2x=6,解得:x=2,∴AE=2;②當BF=CF時.∵BF=CF,∴∠B=∠FCB.∵∠A+∠B=90°,∠FCA+∠FCB=90°,∴∠A=∠FCA,∴AF=FC.∵BF=FC,∴AF=BF,∴x+x=1﹣2x,解得:x,∴AE;③當CF=BC時,作CG⊥AB于G,如圖所示:則BG=FGBF.根據(jù)射影定理得:BC2=BG?AB,∴BG,即(1﹣2x),解得:x,∴AE;綜上所述:當△BCF為等腰三角形時,AE的長為:2或或.故答案為:2或或.【題目點撥】本題考查了翻折變換的性質(zhì)、勾股定理、射影定理、等腰三角形的性質(zhì);本題有一定難度,需要進行分類討論.17、6【分析】設(shè)正方形ABOC與正方形EFCD的邊長分別為m,n,根據(jù)S△AOE=S梯形ACDE+S△AOC-S△ADE,可求出m2=6,然后根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義即可求解.【題目詳解】設(shè)正方形ABOC與正方形EFCD的邊長分別為m,n,則OD=m+n,∵S△AOE=S梯形ACDE+S△AOC-S△ADE,∴,∴m2=6,∵點A在反比例函數(shù)的圖象上,∴k=m2=6,故答案為:6.【題目點撥】本題考查了正方形的性質(zhì),割補法求圖形的面積,反比例函數(shù)比例系數(shù)k的幾何意義,從反比例函數(shù)(k為常數(shù),k≠0)圖像上任一點P,向x軸和y軸作垂線你,以點P及點P的兩個垂足和坐標原點為頂點的矩形的面積等于常數(shù).18、①④【分析】①按照圓的內(nèi)接三角形的定義判斷即可,三頂點都在一個圓周上的三角形,叫做這個圓周的內(nèi)接三角形;②利用垂徑定理得到弧長之間的關(guān)系即可;③設(shè)OP與DE交于點M,利用垂徑定理可得DE⊥OP,DE=2ME,再利用直角三角形中斜邊長大于直角邊,找到PE與與ME的關(guān)系,進一步可以得到DE與PE的關(guān)系;④根據(jù),即可得到∠DAP=∠PAE,則AP平分∠BAC.【題目詳解】解:①點A、D、E三點均在⊙O上,所以△ADE是⊙O的內(nèi)接三角形,此項正確;②∵DE⊥DE交⊙O于點P∴并不能證明與、關(guān)系,∴不正確;③設(shè)OP與DE交于點M∵DE⊥DE交⊙O于點P∴DE⊥OP,ME=DE(垂徑定理)∴△PME是直角三角形∴ME<PE∴<PE∴DE<2PE故此項錯誤.④∵(已證)∴∠DAP=∠PAE(同弧所對的圓周角相等)∴AP平分∠BAC.故此項正確.故正確的序號為:①④【題目點撥】本題考查了圓中內(nèi)接三角形定義、垂徑定理與圓周角定理的應(yīng)用,熟練掌握定理是解決此題的關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)﹣2或2【分析】(1)證明一元二次方程根的判別式恒大于等于1,即可解答;(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,以及,由|x1﹣x2|=即可求得a的值.【題目詳解】(1)證明:∵關(guān)于x的方程ax2+(3﹣2a)x+a﹣3=1中,△=(3﹣2a)2﹣4a(a﹣3)=9>1,∴無論a為何實數(shù),方程總有實數(shù)根.(2)解:如果方程的兩個實數(shù)根x1,x2,則,∵,∴,解得a=±2.故a的值是﹣2或2.【題目點撥】本本題考查了一元二次方程的判別式和根與系數(shù)的關(guān)系,解決本題的關(guān)鍵是正確理解題意,熟練掌握一元二次方程的判別式和根與系數(shù)之間的關(guān)系.20、(1)且;(2),.【分析】(1)由方程有兩個不相等的實數(shù)根,可得△=b2-4ac>0,繼而求得m的取值范圍;(2)因為最小正整數(shù)為1,所以把m=1代入方程。解方程即可解答.【題目詳解】解:(1)∵原方程有兩個不相等的實數(shù)根∴,即∴又∵原方程為一元二次方程,∴綜上,的取值范圍是且;∵最小正整數(shù),∴m=1,把m=1代入方程得:,解得:,.【題目點撥】本題考查根的判別式、解一元二次方程,解題關(guān)鍵是熟練掌握根的判別式.21、(1)見解析;(2)【分析】(1)由垂徑定理可證AB⊥CD,由CD∥BF,得AB⊥BF,則BF是⊙O的切線;(2)連接BD,根據(jù)同弧所對圓周角相等得到∠BCD=∠BAD,再利用圓的性質(zhì)得到∠ADB=90°,tan∠BCD=tan∠BAD=,得到BD與AD的關(guān)系,再利用解直角三角形可以得到BD、AD與半徑的關(guān)系,進一步求解即可得到答案.【題目詳解】(1)證明:∵⊙O的直徑AB與弦CD相交于點E,且E為CD中點∴AB⊥CD,∠AED=90°∵CD//BF∴∠ABF=∠AED=90°∴AB⊥BF∵AB是⊙O的直徑∴BF是⊙O的切線(2)解:連接BD∵∠BCD、∠BAD是同弧所對圓周角∴∠BCD=∠BAD∵AB是⊙O的直徑∴∠ADB=90°∵tan∠BCD=tan∠BAD=∴∴設(shè)BD=3x,AD=4x∴AB=5x∵⊙O的半徑為2,AB=4∴5x=4,x=∴AD=4x=【題目點撥】本題考查了切線的判定與性質(zhì),垂徑定理,圓周角定理,解直角三角形的知識.關(guān)鍵是利用圓周角定理將已知角進行轉(zhuǎn)化,利用直徑證明直角三角形.22、(1)這兩年香草源旅游收入的年平均增長率為20﹪;(2)【分析】(1)根據(jù)題意設(shè)這兩年香草源旅游收入的年平均增長率為x,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;(2)由題意根據(jù)求出的增長率,以2018年收入為初始年求出n年后該縣旅游收入即可.【題目詳解】解:(1)設(shè)這兩年香草源旅游收入的年平均增長率為x,依題意得,解得=20﹪;(舍去).答.這兩年香草源旅游收入的年平均增長率為20﹪.(2)由香草源旅游景區(qū)的收入一直保持這樣的平均年增長率以及2018年收入為720萬元可得,香草源旅游景區(qū)n年后的收入為:=.答:n年后的收入表達式是.【題目點撥】本題考查一元二次方程的實際應(yīng)用,弄清題意并根據(jù)題意找到等量關(guān)系列方程求解是解答本題的關(guān)鍵.23、(1);(2);(3)或【分析】(1)先求出頂點橫坐標,然后代入解析式求出頂點縱坐標即可;(2)根據(jù)二次函數(shù)的增減性列式解答即可;(3)分三種情況求解:①當k>1時,當k<0時,當時.【題目詳解】解:(1)對稱軸為:,代入函數(shù)得:,∴頂點坐標為:;(2)∵對稱軸為:x=k,二次函數(shù)二次項系數(shù)小于零,開口向下;∴當時,y隨x增大而減??;∵當時,y隨x增大而減?。弧啵?)①當k>1時,在中,y隨x增大而增大;∴當x=1時,y取最大值,最大值為:;∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論