版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
數(shù)學一考試大綱考試科目:高等數(shù)學、線性代數(shù)、概率論與數(shù)理記錄考試形式和試卷構造一、試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘.二、答題方式答題方式為閉卷、筆試.三、試卷內(nèi)容構造高等數(shù)學約56%線性代數(shù)約22%概率論與數(shù)理記錄約22%四、試卷題型構造單項選擇題8小題,每題4分,共32分填空題6小題,每題4分,共24分解答題(包括證明題)9小題,共94分高等數(shù)學一、函數(shù)、極限、持續(xù)考試內(nèi)容函數(shù)的概念及表達法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關系無窮小量的性質(zhì)及無窮小量的比較極限的四則運算極限存在的兩個準則:單調(diào)有界準則和夾逼準則兩個重要極限:函數(shù)持續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的持續(xù)性閉區(qū)間上持續(xù)函數(shù)的性質(zhì)考試規(guī)定1.理解函數(shù)的概念,掌握函數(shù)的表達法,會建立應用問題的函數(shù)關系.2.理解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.3.理解復合函數(shù)及分段函數(shù)的概念,理解反函數(shù)及隱函數(shù)的概念.4.掌握基本初等函數(shù)的性質(zhì)及其圖形,理解初等函數(shù)的概念.5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關系.6.掌握極限的性質(zhì)及四則運算法則.7.掌握極限存在的兩個準則,并會運用它們求極限,掌握運用兩個重要極限求極限的措施.8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較措施,會用等價無窮小量求極限.9.理解函數(shù)持續(xù)性的概念(含左持續(xù)與右持續(xù)),會鑒別函數(shù)間斷點的類型.10.理解持續(xù)函數(shù)的性質(zhì)和初等函數(shù)的持續(xù)性,理解閉區(qū)間上持續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應用這些性質(zhì).二、一元函數(shù)微分學考試內(nèi)容導數(shù)和微分的概念導數(shù)的幾何意義和物理意義函數(shù)的可導性與持續(xù)性之間的關系平面曲線的切線和法線導數(shù)和微分的四則運算基本初等函數(shù)的導數(shù)復合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導數(shù)一階微分形式的不變性微分中值定理洛必達(L’Hospital)法則函數(shù)單調(diào)性的鑒別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑考試規(guī)定1.理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,理解導數(shù)的物理意義,會用導數(shù)描述某些物理量,理解函數(shù)的可導性與持續(xù)性之間的關系.2.掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初等函數(shù)的導數(shù)公式.理解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分.3.理解高階導數(shù)的概念,會求簡樸函數(shù)的高階導數(shù).4.會求分段函數(shù)的導數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù).5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,理解并會用柯西(Cauchy)中值定理.6.掌握用洛必達法則求未定式極限的措施.7.理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的措施,掌握函數(shù)最大值和最小值的求法及其應用.8.會用導數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設函數(shù)具有二階導數(shù).當時,的圖形是凹的;當時,的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形.9.理解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑.三、一元函數(shù)積分學考試內(nèi)容原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)及其導數(shù)牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數(shù)、三角函數(shù)的有理式和簡樸無理函數(shù)的積分反常(廣義)積分定積分的應用考試規(guī)定1.理解原函數(shù)的概念,理解不定積分和定積分的概念.2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.3.會求有理函數(shù)、三角函數(shù)有理式和簡樸無理函數(shù)的積分.4.理解積分上限的函數(shù),會求它的導數(shù),掌握牛頓-萊布尼茨公式.5.理解反常積分的概念,會計算反常積分.6.掌握用定積分體現(xiàn)和計算某些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值.四、向量代數(shù)和空間解析幾何考試內(nèi)容向量的概念向量的線性運算向量的數(shù)量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標體現(xiàn)式及其運算單位向量方向數(shù)與方向余弦曲面方程和空間曲線方程的概念平面方程直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點到平面和點到直線的距離球面柱面旋轉(zhuǎn)曲面常用的二次曲面方程及其圖形空間曲線的參數(shù)方程和一般方程空間曲線在坐標面上的投影曲線方程考試規(guī)定1.理解空間直角坐標系,理解向量的概念及其表達.2.掌握向量的運算(線性運算、數(shù)量積、向量積、混合積),理解兩個向量垂直、平行的條件.3.理解單位向量、方向數(shù)與方向余弦、向量的坐標體現(xiàn)式,掌握用坐標體現(xiàn)式進行向量運算的措施.4.掌握平面方程和直線方程及其求法.5.會求平面與平面、平面與直線、直線與直線之間的夾角,并會運用平面、直線的互相關系(平行、垂直、相交等))處理有關問題.6.會求點到直線以及點到平面的距離.7.理解曲面方程和空間曲線方程的概念.8.理解常用二次曲面的方程及其圖形,會求簡樸的柱面和旋轉(zhuǎn)曲面的方程.9.理解空間曲線的參數(shù)方程和一般方程.理解空間曲線在坐標平面上的投影,并會求該投影曲線的方程.五、多元函數(shù)微分學考試內(nèi)容多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與持續(xù)的概念有界閉區(qū)域上多元持續(xù)函數(shù)的性質(zhì)多元函數(shù)的偏導數(shù)和全微分全微分存在的必要條件和充足條件多元復合函數(shù)、隱函數(shù)的求導法二階偏導數(shù)方向?qū)?shù)和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數(shù)的二階泰勒公式多元函數(shù)的極值和條件極值多元函數(shù)的最大值、最小值及其簡樸應用考試規(guī)定1.理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義.2.理解二元函數(shù)的極限與持續(xù)的概念以及有界閉區(qū)域上持續(xù)函數(shù)的性質(zhì).3.理解多元函數(shù)偏導數(shù)和全微分的概念,會求全微分,理解全微分存在的必要條件和充足條件,理解全微分形式的不變性.4.理解方向?qū)?shù)與梯度的概念,并掌握其計算措施.5.掌握多元復合函數(shù)一階、二階偏導數(shù)的求法.6.理解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導數(shù).7.理解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程.8.理解二元函數(shù)的二階泰勒公式.9.理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,理解二元函數(shù)極值存在的充足條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡樸多元函數(shù)的最大值和最小值,并會處理某些簡樸的應用問題.六、多元函數(shù)積分學考試內(nèi)容二重積分與三重積分的概念、性質(zhì)、計算和應用兩類曲線積分的概念、性質(zhì)及計算兩類曲線積分的關系格林(Green)公式平面曲線積分與途徑無關的條件二元函數(shù)全微分的原函數(shù)兩類曲面積分的概念、性質(zhì)及計算兩類曲面積分的關系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應用考試規(guī)定1.理解二重積分、三重積分的概念,理解重積分的性質(zhì),理解二重積分的中值定理.2.掌握二重積分的計算措施(直角坐標、極坐標),會計算三重積分(直角坐標、柱面坐標、球面坐標).3.理解兩類曲線積分的概念,理解兩類曲線積分的性質(zhì)及兩類曲線積分的關系.4.掌握計算兩類曲線積分的措施.5.掌握格林公式并會運用平面曲線積分與途徑無關的條件,會求二元函數(shù)全微分的原函數(shù).6.理解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關系,掌握計算兩類曲面積分的措施,掌握用高斯公式計算曲面積分的措施,并會用斯托克斯公式計算曲線積分.7.理解散度與旋度的概念,并會計算.8.會用重積分、曲線積分及曲面積分求某些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、質(zhì)心、形心、轉(zhuǎn)動慣量、引力、功及流量等).七、無窮級數(shù)考試內(nèi)容常數(shù)項級數(shù)的收斂與發(fā)散的概念收斂級數(shù)的和的概念級數(shù)的基本性質(zhì)與收斂的必要條件幾何級數(shù)與級數(shù)及其收斂性正項級數(shù)收斂性的鑒別法交錯級數(shù)與萊布尼茨定理任意項級數(shù)的絕對收斂與條件收斂函數(shù)項級數(shù)的收斂域與和函數(shù)的概念冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域冪級數(shù)的和函數(shù)冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)簡樸冪級數(shù)的和函數(shù)的求法初等函數(shù)的冪級數(shù)展開式函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù)狄利克雷(Dirichlet)定理函數(shù)在上的傅里葉級數(shù)函數(shù)在上的正弦級數(shù)和余弦級數(shù)考試規(guī)定1.理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件.2.掌握幾何級數(shù)與級數(shù)的收斂與發(fā)散的條件.3.掌握正項級數(shù)收斂性的比較鑒別法和比值鑒別法,會用根值鑒別法.4.掌握交錯級數(shù)的萊布尼茨鑒別法.5.理解任意項級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系.6.理解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念.7.理解冪級數(shù)收斂半徑的概念,并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法.8.理解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的持續(xù)性、逐項求導和逐項積分),會求某些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和.9.理解函數(shù)展開為泰勒級數(shù)的充足必要條件.10.掌握,,,及的麥克勞林(Maclaurin)展開式,會用它們將某些簡樸函數(shù)間接展開為冪級數(shù).11.理解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在上的函數(shù)展開為傅里葉級數(shù),會將定義在上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的和函數(shù)的體現(xiàn)式.八、常微分方程考試內(nèi)容常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡樸的變量代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質(zhì)及解的構造定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡樸的二階常系數(shù)非齊次線性微分方程歐拉(Euler)方程微分方程的簡樸應用考試規(guī)定1.理解微分方程及其階、解、通解、初始條件和特解等概念.2.掌握變量可分離的微分方程及一階線性微分方程的解法.3.會解齊次微分方程、伯努利方程和全微分方程,會用簡樸的變量代換解某些微分方程.4.會用降階法解下列形式的微分方程:和.5.理解線性微分方程解的性質(zhì)及解的構造.6.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程.7.會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程.8.會解歐拉方程.9.會用微分方程處理某些簡樸的應用問題.線性代數(shù)一、行列式考試內(nèi)容行列式的概念和基本性質(zhì)行列式按行(列)展開定理考試規(guī)定1.理解行列式的概念,掌握行列式的性質(zhì).2.會應用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式.二、矩陣考試內(nèi)容矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充足必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算考試規(guī)定1.理解矩陣的概念,理解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質(zhì).2.掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,理解方陣的冪與方陣乘積的行列式的性質(zhì).3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充足必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.4.理解矩陣初等變換的概念,理解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的措施.5.理解分塊矩陣及其運算.三、向量考試內(nèi)容向量的概念向量的線性組合與線性表達向量組的線性有關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量空間及其有關概念維向量空間的基變換和坐標變換過渡矩陣向量的內(nèi)積線性無關向量組的正交規(guī)范化措施規(guī)范正交基正交矩陣及其性質(zhì)考試規(guī)定1.理解維向量、向量的線性組合與線性表達的概念.2.理解向量組線性有關、線性無關的概念,掌握向量組線性有關、線性無關的有關性質(zhì)及鑒別法.3.理解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩.4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系.5.理解維向量空間、子空間、基底、維數(shù)、坐標等概念.6.理解基變換和坐標變換公式,會求過渡矩陣.7.理解內(nèi)積的概念,掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)措施.8.理解規(guī)范正交基、正交矩陣的概念以及它們的性質(zhì).四、線性方程組考試內(nèi)容線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充足必要條件非齊次線性方程組有解的充足必要條件線性方程組解的性質(zhì)和解的構造齊次線性方程組的基礎解系和通解解空間非齊次線性方程組的通解考試規(guī)定l.會用克拉默法則.2.理解齊次線性方程組有非零解的充足必要條件及非齊次線性方程組有解的充足必要條件.3.理解齊次線性方程組的基礎解系、通解及解空間的概念,掌握齊次線性方程組的基礎解系和通解的求法.4.理解非齊次線性方程組解的構造及通解的概念.5.掌握用初等行變換求解線性方程組的措施.五、矩陣的特性值和特性向量考試內(nèi)容矩陣的特性值和特性向量的概念、性質(zhì)相似變換、相似矩陣的概念及性質(zhì)矩陣可相似對角化的充足必要條件及相似對角矩陣實對稱矩陣的特性值、特性向量及其相似對角矩陣考試規(guī)定1.理解矩陣的特性值和特性向量的概念及性質(zhì),會求矩陣的特性值和特性向量.2.理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充足必要條件,掌握將矩陣化為相似對角矩陣的措施.3.掌握實對稱矩陣的特性值和特性向量的性質(zhì).六、二次型考試內(nèi)容二次型及其矩陣表達協(xié)議變換與協(xié)議矩陣二次型的秩慣性定理二次型的原則形和規(guī)范形用正交變換和配措施化二次型為原則形二次型及其矩陣的正定性考試規(guī)定1.掌握二次型及其矩陣表達,理解二次型秩的概念,理解協(xié)議變換與協(xié)議矩陣的概念,理解二次型的原則形、規(guī)范形的概念以及慣性定理.2.掌握用正交變換化二次型為原則形的措施,會用配措施化二次型為原則形.3.理解正定二次型、正定矩陣的概念,并掌握其鑒別法.概率論與數(shù)理記錄一、隨機事件和概率考試內(nèi)容隨機事件與樣本空間事件的關系與運算完備事件組概率的概念概率的基本性質(zhì)古經(jīng)典概率幾何型概率條件概率概率的基本公式事件的獨立性獨立反復試驗考試規(guī)定1.理解樣本空間(基本領件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算.2.理解概率、條件概率的概念,掌握概率的基本性質(zhì),會計算古經(jīng)典概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式.3.理解事件獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立反復試驗的概念,掌握計算有關事件概率的措施.二、隨機變量及其分布考試內(nèi)容隨機變量隨機變量分布函數(shù)的概念及其性質(zhì)離散型隨機變量的概率分布持續(xù)型隨機變量的概率密度常見隨機變量的分布隨機變量函數(shù)的分布考試規(guī)定1.理解隨機變量的概念,理解分布函數(shù)的概念及性質(zhì),會計算與隨機變量相聯(lián)絡的事件的概率.2.理解離散型隨機變量及其概率分布的概念,掌握0-1分布、二項分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應用.3.理解泊松定理的結(jié)論和應用條件,會用泊松分布近似表達二項分布.4.理解持續(xù)型隨機變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應用,其中參數(shù)為的指數(shù)分布的概率密度為5.會求隨機變量函數(shù)的分布.三、多維隨機變量及其分布考試內(nèi)容多維隨機變量及其分布二維離散型隨機變量的概率分布、邊緣分布和條件分布二維持續(xù)型隨機變量的概率密度、邊緣概率密度和條件密度隨機變量的獨立性和不有關性常用二維隨機變量的分布兩個及兩個以上隨機變量簡樸函數(shù)的分布考試規(guī)定1.理解多維隨機變量的概念,理解多維隨機變量的分布的概念和性質(zhì),理解二維離散型隨機變量的概率分布、邊緣分布和條件分布,理解二維持續(xù)型隨機變量的概率密度、邊緣密度和條件密度,會求與二維隨機變量有關事件的概率.2.理解隨機變量的獨立性及不有關性的概念,掌握隨機變量互相獨立的條件.3.掌握二維均勻分布,理解二維正態(tài)分布的概率密度,理解其中參數(shù)的概率意義.4.會求兩個隨機變量簡樸函數(shù)的分布,會求多種互相獨立隨機變量簡樸函數(shù)的分布.四、隨機變量的數(shù)字特性考試內(nèi)容隨機變量的數(shù)學期望(均值)、方差、原則差及其性質(zhì)隨機變量函數(shù)的數(shù)學期望矩、協(xié)方差、有關系數(shù)及其性質(zhì)考試規(guī)定1.理解隨機變量數(shù)字特性(數(shù)學期望、方差、原則差、矩、協(xié)方差、有關系數(shù))的概念,會運用數(shù)字特性的基本性質(zhì),并掌握常用分布的數(shù)字特性.2.會求隨機變量函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人工耳蝸行業(yè)政策分析:人工耳蝸行業(yè)標準推動人工耳蝸技術普及
- 2025年個人三項機制學習心得體會模版(3篇)
- 課題申報參考:緊密型醫(yī)聯(lián)體視角下大灣區(qū)老年中醫(yī)藥服務評價體系構建與實證研究
- 二零二五年度集團高層管理人員任期制競聘與續(xù)聘合同6篇
- 2025版小時工定期雇傭合同范本3篇
- 2025版土地征收及安置補償中介服務合同3篇
- 全新二零二五年度房地產(chǎn)銷售代理合同3篇
- 二零二五版企業(yè)內(nèi)部會計檔案安全保密服務協(xié)議3篇
- 2025年度文化創(chuàng)意產(chǎn)品開發(fā)與銷售合作協(xié)議范本4篇
- 二零二五年度廚具品牌設計創(chuàng)新合同4篇
- 圖像識別領域自適應技術-洞察分析
- 個體戶店鋪租賃合同
- 禮盒業(yè)務銷售方案
- 二十屆三中全會精神學習試題及答案(100題)
- 小學五年級英語閱讀理解(帶答案)
- 仁愛版初中英語單詞(按字母順序排版)
- (正式版)YS∕T 5040-2024 有色金屬礦山工程項目可行性研究報告編制標準
- 【奧運會獎牌榜預測建模實證探析12000字(論文)】
- 危險廢物貯存?zhèn)}庫建設標準
- 多層工業(yè)廠房主體結(jié)構施工方案鋼筋混凝土結(jié)構
- 救生艇筏、救助艇基本知識課件
評論
0/150
提交評論