貴州省貴陽市暗流鄉(xiāng)中學高二數(shù)學文知識點試題含解析_第1頁
貴州省貴陽市暗流鄉(xiāng)中學高二數(shù)學文知識點試題含解析_第2頁
貴州省貴陽市暗流鄉(xiāng)中學高二數(shù)學文知識點試題含解析_第3頁
貴州省貴陽市暗流鄉(xiāng)中學高二數(shù)學文知識點試題含解析_第4頁
貴州省貴陽市暗流鄉(xiāng)中學高二數(shù)學文知識點試題含解析_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

貴州省貴陽市暗流鄉(xiāng)中學高二數(shù)學文知識點試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知命題p:?x∈(1,+∞),x3+16>8x,則命題p的否定為()A.?x∈(1,+∞),x3+16≤8x B.?x∈(1,+∞),x3+16<8xC.?x∈(1,+∞),x3+16≤8x D.?x∈(1,+∞),x3+16<8x參考答案:C【考點】2J:命題的否定.【分析】根據(jù)全稱命題的否定是特稱命題進行判斷即可.【解答】解:命題是全稱命題,則命題的否定是特稱命題,即命題的否定是:¬p:?x∈(1,+∞),x3+16≤8x,故選:C2.已知復數(shù),,.在復平面上,設復數(shù),對應的點分別為,,若,其中O是坐標原點,則函數(shù)的最大值為()A. B. C. D.參考答案:B【分析】根據(jù)向量垂直關系的坐標運算和三角函數(shù)的最值求解.【詳解】據(jù)條件,,,且,所以,,化簡得,,當時,取得最大值為.【點睛】本題考查向量數(shù)量積運算和三角函數(shù)的最值,屬于基礎題.3.在中,“”是“”的(

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件參考答案:C4.設,若,則下列不等式中正確的是(

A.

B.

C.

D.參考答案:B5.設是等差數(shù)列的前項和,若,則等于()A.1

B.-1

C.2

D.(改編題)參考答案:A6.設坐標原點為O,拋物線y2=2x與過焦點的直線交于A、B兩點,則等于A.

B.

C.3

D.﹣3參考答案:A7.設函數(shù),若為奇函數(shù),則曲線在點(0,0)處的切線方程為A.

B.

C.

D. 參考答案:D8.用數(shù)學歸納法證明n(n+1)(2n+1)能被6整除時,由歸納假設推證n=k+1時命題成立,需將n=k+1時的原式表示成()A.k(k+1)(2k+1)+6(k+1)

B.6k(k+1)(2k+1)C.k(k+1)(2k+1)+6(k+1)2

D.以上都不對參考答案:C略9.已知是定義在上的函數(shù),,那么“對任意的,恒成立”的充要條件是(

)A.對任意的,或

恒成立B.對任意的,恒成立或對任意的,恒成立C.對任意的,或

恒成立D.對任意的,恒成立且對任意的,恒成立參考答案:A10.甲、乙兩工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表所列:工人甲乙廢品數(shù)01230123概率0.40.30.20.10.30.50.20則有結論()A.甲的產(chǎn)品質量比乙的產(chǎn)品質量好一些

B.乙的產(chǎn)品質量比甲的產(chǎn)品質量好一些C.兩人的產(chǎn)品質量一樣好

D.無法判斷誰的質量好一些參考答案:B略二、填空題:本大題共7小題,每小題4分,共28分11.已知函數(shù)的零點,則整數(shù)a的值為______.參考答案:3【分析】根據(jù)函數(shù)單調性可知若存在零點則零點唯一,由零點存在定理可判斷出零點所在區(qū)間,從而求得結果.【詳解】由題意知:在上單調遞增若存在零點,則存在唯一一個零點又,由零點存在定理可知:,則本題正確結果:【點睛】本題考查零點存在定理的應用,屬于基礎題.12.已知,則的展開式中的常數(shù)項為

.參考答案:

13.從這四個數(shù)中選三個不同的數(shù)作為函數(shù)的系數(shù),可組成不同的二次函數(shù)共有_____個。(用數(shù)字作答)參考答案:1814.矩陣的逆矩陣為__________.參考答案:【分析】通過逆矩陣的定義構建方程組即可得到答案.【詳解】由逆矩陣的定義知:,設,由題意可得:,即解得,因此.【點睛】本題主要考查逆矩陣的相關計算,難度不大.15.做一個無蓋的圓柱形水桶,若要使體積是27,且用料最省,則圓柱的底面半徑為

參考答案:3略16.執(zhí)行右面的程序框圖,若輸入的的值為,則輸出的的值為_______.參考答案:317.若鈍角三角形三內(nèi)角的度數(shù)成等差數(shù)列,且最大邊長與最小邊長的比值為,則的取值范圍是

A.(1,2)

B.(2,+∞)

C.[3,+∞

D.(3,+∞)參考答案:B略三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.(本小題6分).已知直線l在兩坐標軸上的截距相等,且點到直線的距離為,求直線的方程.參考答案:當直線過原點時,設直線方程為y=kx,由點到直線的距離為,得,解得k=-7或k=1.............................2分此時直線l的方程為y=-7x或y=x.............................3分當直線不過原點時,設直線方程為x+y=a,由點到直線的距離為,得,解得a=2或a=6.............................5分此時所求的直線方程為x+y-2=0或x+y-6=0.............................6分綜上所述,直線l的方程為y=-7x或y=x或x+y-2=0或x+y-6=019.在中,分別為內(nèi)角的對邊,且

(Ⅰ)求的大小;(Ⅱ)求的最大值.參考答案:解:(Ⅰ)由已知,根據(jù)正弦定理得即

由余弦定理得

,A=120°

……6分(Ⅱ)由(Ⅰ)得:

故當B=30°時,sinB+sinC取得最大值1

……12分略20.一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分,現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形ABCD(如圖所示,其中O為圓心,C,D在半圓上),設∠BOC=θ,直四棱柱木梁的體積為V(單位:m3),側面積為S(單位:m2).(Ⅰ)分別求V與S關于θ的函數(shù)表達式;(Ⅱ)求側面積S的最大值;(Ⅲ)求θ的值,使體積V最大.參考答案:【考點】導數(shù)在最大值、最小值問題中的應用;三角函數(shù)中的恒等變換應用.【分析】(I)列出梯形ABCD的面積SABCD=﹣sinθ=sinθcosθ+sinθ,θ∈(0,),求解體積V(θ)=10(sinθcosθ+sinθ),θ∈(0,).(II)得出g(θ)=﹣2sin2+2sin+2,利用二次函數(shù)求解即可.(III)V(θ)=10(sinθcosθ+sinθ),θ∈(0,),求解導數(shù)得出V′(θ)=10(2cos2θ+cosθ﹣1)=10(2cosθ﹣1)(cosθ+1),根據(jù)導數(shù)與單調性的關系求解.【解答】解:(Ⅰ)木梁的側面積S=10(AB+2BC+CD)=10(2+4sin+2cosθ)=20(cosθ+2sin+1),θ∈(0,),梯形ABCD的面積SABCD=﹣sinθ=sinθcosθ+sinθ,θ∈(0,),體積V(θ)=10(sinθcosθ+sinθ),θ∈(0,);(Ⅱ)木梁的側面積S=10(AB+2BC+CD)=10(2+4sin+2cosθ)=20(cos+1),θ∈(0,),設g(θ)=cos+1,g(θ)=﹣2sin2+2sin+2,∴當sin=,θ∈(0,),即θ=時,木梁的側面積s最大.所以θ=時,木梁的側面積s最大為40m2.(Ⅲ)V′(θ)=10(2cos2θ+cosθ﹣1)=10(2cosθ﹣1)(cosθ+1)令V′(θ)=0,得cosθ=,或cosθ=﹣1(舍)∵θ∈(0,),∴θ=.當θ∈(0,)時,<cosθ<1,V′(θ)>0,V(θ)為增函數(shù);當θ∈(,)時,0<cosθ<,V′(θ)>0,V(θ)為減函數(shù).∴當θ=時,體積V最大.【點評】本題考查了三角函數(shù)在解決實際問題中的運用,導數(shù)在解決復雜函數(shù)最值中的運用,關鍵準確求解導數(shù).21.設t∈R,已知p:函數(shù)f(x)=x2﹣tx+1有零點,q:?x∈R,|x﹣1|≥2﹣t2.(Ⅰ)若q為真命題,求t的取值范圍;(Ⅱ)若p∨q為假命題,求t的取值范圍.參考答案:【考點】命題的真假判斷與應用.【分析】(Ⅰ)利用q為真命題,轉化列出不等式求解即可t的取值范圍;(Ⅱ)求出兩個命題都是假命題時的公共部分即可.【解答】解:(Ⅰ)若q為真命題,:?x∈R,|x﹣1|≥2﹣t2.可得2﹣t2≤0,解得t∈(﹣].t的取值范圍:(﹣];(Ⅱ)p∨q為假命題,兩個命題都是假命題;p為假命題,函數(shù)f(x)=x2﹣tx+1沒有零點,即t2﹣4<0.解得t∈(﹣2,2).q為假命題,可得t.p∨q為假命題,t的取值范圍.22.設△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,且cosB=,b=2.(1)當A=時,求a的值;(2)當△ABC的面積為3時,求a+c的值.參考答案

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論