2024屆廣東省大埔縣九年級數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁
2024屆廣東省大埔縣九年級數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁
2024屆廣東省大埔縣九年級數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁
2024屆廣東省大埔縣九年級數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁
2024屆廣東省大埔縣九年級數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆廣東省大埔縣九年級數(shù)學(xué)第一學(xué)期期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如下圖形中既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.2.如圖,四邊形內(nèi)接于,延長交于點,連接.若,,則的度數(shù)為()A. B. C. D.3.如圖,正方形ABCD中,點EF分別在BC、CD上,△AEF是等邊三角形,連AC交EF于G,下列結(jié)論:①∠BAE=∠DAF=15°;②AG=GC;③BE+DF=EF;④S△CEF=2S△ABE,其中正確的個數(shù)為()A.1 B.2 C.3 D.44.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則反比例函數(shù)y=與一次函數(shù)y=bx﹣c在同一坐標(biāo)系內(nèi)的圖象大致是()A. B. C. D.5.下列圖形中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.6.如圖,四邊形與四邊形是位似圖形,則位似中心是()A.點 B.點 C.點 D.點7.二次函數(shù)y=x2+4x+3,當(dāng)0≤x≤時,y的最大值為()A.3 B.7 C. D.8.如圖,已知一次函數(shù)y=ax+b與反比例函數(shù)y=圖象交于M、N兩點,則不等式ax+b>解集為()A.x>2或﹣1<x<0 B.﹣1<x<0C.﹣1<x<0或0<x<2 D.x>29.下列說法正確的是()A.垂直于半徑的直線是圓的切線 B.經(jīng)過三點一定可以作圓C.平分弦的直徑垂直于弦 D.每個三角形都有一個外接圓10.由兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤、每個轉(zhuǎn)盤被分成如圖所示的幾個扇形、游戲者同時轉(zhuǎn)動兩個轉(zhuǎn)盤,如果一個轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一轉(zhuǎn)盤轉(zhuǎn)出了藍色,游戲者就配成了紫色下列說法正確的是()A.兩個轉(zhuǎn)盤轉(zhuǎn)出藍色的概率一樣大B.如果A轉(zhuǎn)盤轉(zhuǎn)出了藍色,那么B轉(zhuǎn)盤轉(zhuǎn)出藍色的可能性變小了C.先轉(zhuǎn)動A轉(zhuǎn)盤再轉(zhuǎn)動B轉(zhuǎn)盤和同時轉(zhuǎn)動兩個轉(zhuǎn)盤,游戲者配成紫色的概率不同D.游戲者配成紫色的概率為11.如圖,在中,,,垂足為點,如果,,那么的長是()A.4 B.6 C. D.12.下列圖形中,成中心對稱圖形的是()A. B. C. D.二、填空題(每題4分,共24分)13.已知關(guān)于x的一元二次方程(k-1)x2+x+k2-1=0有一個根為0,則k的值為________.14.如圖,點A、B、C在半徑為9的⊙O上,的長為,則∠ACB的大小是___.15.二次函數(shù)圖象與軸交于點,則與圖象軸的另一個交點的坐標(biāo)為__.16.如圖,在菱形中,邊長為10,.順次連結(jié)菱形各邊中點,可得四邊形;順次連結(jié)四邊形各邊中點,可得四邊形;順次連結(jié)四邊形各邊中點,可得四邊形;按此規(guī)律繼續(xù)下去….則四邊形的周長是_________.17.已知(a+b)(a+b﹣4)=﹣4,那么(a+b)=_____.18.如圖,矩形的對角線、相交于點,AB與BC的比是黃金比,過點C作CE∥BD,過點D作DE∥AC,DE、交于點,連接AE,則tan∠DAE的值為___________.(不取近似值)三、解答題(共78分)19.(8分)飛行員將飛機上升至離地面米的點時,測得點看樹頂點的俯角為,同時也測得點看樹底點的俯角為,求該樹的高度(結(jié)果保留根號).20.(8分)為爭創(chuàng)文明城市,我市交警部門在全市范圍開展了安全使用電瓶車專項宣傳活動.在活動前和活動后分別隨機抽取了部分使用電瓶車的市民,就騎電瓶車戴安全帽情況進行問卷調(diào)查,并將兩次收集的數(shù)據(jù)制成如下統(tǒng)計圖表.類別人數(shù)百分比A686.8%B245b%Ca51%D17717.7%總計c100%根據(jù)以上提供的信息解決下列問題:(1)a=,b=c=(2)若我市約有30萬人使用電瓶車,請分別計算活動前和活動后全市騎電瓶車“都不戴”安全帽的人數(shù).(3)經(jīng)過某十字路口,汽車無法繼續(xù)直行只可左轉(zhuǎn)或右轉(zhuǎn),電動車不受限制,現(xiàn)有一輛汽車和一輛電動車同時到達該路口,用畫樹狀圖或列表的方法求汽車和電動車都向左轉(zhuǎn)的概率.21.(8分)如圖,PA,PB是圓O的切線,A,B是切點,AC是圓O的直徑,∠BAC=25°,求∠P的度數(shù).22.(10分)如圖,在中,,,以為原點所在直線為軸建立平面直角坐標(biāo)系,的頂點在反比例函數(shù)的圖象上.(1)求反比例函數(shù)的解析式:(2)將向右平移個單位長度,對應(yīng)得到,當(dāng)函數(shù)的圖象經(jīng)過一邊的中點時,求的值.23.(10分)如圖,內(nèi)接于,直徑交于點,延長至點,使,且,連接并延長交過點的切線于點,且滿足,連接.(1)求證:;(2)求證:是的切線.24.(10分)為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.(1)開通隧道前,汽車從A地到B地大約要走多少千米?(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)25.(12分)如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),(1)求該拋物線的解析式;(2)拋物線的對稱軸上是否存在一點M,使ΔACM的周長最???若存在,請求出點M的坐標(biāo),若不存在,請說明理由.(3)設(shè)拋物線上有一個動點P,當(dāng)點P在該拋物線上滑動到什么位置時,滿足SΔPAB=8,并求出此時點26.如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為米/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?

參考答案一、選擇題(每題4分,共48分)1、B【解題分析】根據(jù)中心對稱圖形的定義以及軸對稱圖形的定義進行判斷即可得出答案.【題目詳解】A.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B.是軸對稱圖形,也是中心對稱圖形,故本選項正確;C.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;D.不是軸對稱圖形,是中心對稱圖形,故本選項錯誤.故選:B.【題目點撥】此題主要考查了中心對稱圖形與軸對稱圖形的定義,根據(jù)定義得出圖形形狀是解決問題的關(guān)鍵.2、B【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠DAB,進而求出∠EAB,根據(jù)圓周角定理得到∠EBA=90°,根據(jù)直角三角形兩銳角互余即可得出結(jié)論.【題目詳解】∵四邊形ABCD內(nèi)接于⊙O,∴∠DAB=180°﹣∠C=180°﹣100°=80°.∵∠DAE=50°,∴∠EAB=∠DAB-∠DAE=80°-50°=30°.∵AE是⊙O的直徑,∴∠EBA=90°,∴∠E=90°﹣∠EAB=90°-30°=60°.故選:B.【題目點撥】本題考查了圓內(nèi)接四邊形的性質(zhì)、圓周角定理,掌握圓內(nèi)接四邊形的對角互補是解題的關(guān)鍵.3、C【解題分析】通過條件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,設(shè)EC=x,用含x的式子表示的BE、EF,利用三角形的面積公式分別表示出S△CEF和2S△ABE再通過比較大小就可以得出結(jié)論.【題目詳解】①∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵△AEF等邊三角形,∴AE=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴AC是EF的垂直平分線,∴AC平分∠EAF,∴∠EAC=∠FAC=×60°=30°,∵∠BAC=∠DAC=45°,∴∠BAE=∠DAF=15°,故①正確;②設(shè)EC=x,則FC=x,由勾股定理,得EF=x,CG=EF=x,AG=AEsin60°=EFsin60°=2×CGsin60°=2×CG,∴AG=CG,故②正確;③由②知:設(shè)EC=x,EF=x,AC=CG+AG=CG+CG=,∴AB==,∴BE=AB﹣CE=﹣x=,∴BE+DF=2×=(﹣1)x≠x,故③錯誤;④S△CEF=,S△ABE=BE?AB=,∴S△CEF=2S△ABE,故④正確,所以本題正確的個數(shù)有3個,分別是①②④,故選C.【題目點撥】本題考查了正方形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,等邊三角形的性質(zhì)的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質(zhì)解題時關(guān)鍵.4、C【解題分析】根據(jù)二次函數(shù)的圖象找出a、b、c的正負,再結(jié)合反比例函數(shù)、一次函數(shù)系數(shù)與圖象的關(guān)系即可得出結(jié)論.【題目詳解】解:觀察二次函數(shù)圖象可知:開口向上,a>1;對稱軸大于1,>1,b<1;二次函數(shù)圖象與y軸交點在y軸的正半軸,c>1.∵反比例函數(shù)中k=﹣a<1,∴反比例函數(shù)圖象在第二、四象限內(nèi);∵一次函數(shù)y=bx﹣c中,b<1,﹣c<1,∴一次函數(shù)圖象經(jīng)過第二、三、四象限.故選C.【題目點撥】本題考查了二次函數(shù)的圖象、反比例函數(shù)的圖象以及一次函數(shù)的圖象,解題的關(guān)鍵是根據(jù)二次函數(shù)的圖象找出a、b、c的正負.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)二次函數(shù)圖象找出a、b、c的正負,再結(jié)合反比例函數(shù)、一次函數(shù)系數(shù)與圖象的關(guān)系即可得出結(jié)論.5、C【分析】觀察四個選項中的圖形,找出既是軸對稱圖形又是中心對稱圖形的那個即可得出結(jié)論.【題目詳解】解:A、此圖形不是軸對稱圖形,是中心對稱圖形,此選項不符合題意;B、此圖形是軸對稱圖形,不是中心對稱圖形,此選項不符合題意;C、此圖形是軸對稱圖形,也是中心對稱圖形,此選項符合題意;D、此圖形既不是軸對稱圖形也不是中心對稱圖形,此選項不符合題意;故選:C.【題目點撥】本題考查了中心對稱圖形以及軸對稱圖形,牢記軸對稱及中心對稱圖形的特點是解題的關(guān)鍵.6、B【分析】根據(jù)位似圖形的定義:如果兩個圖形不僅是相似圖形,而且每組對應(yīng)點的連線交于一點,對應(yīng)邊互相平行或在一條直線上,那么這兩個圖形叫做位似圖形,這個點叫做位似中心,判斷即可.【題目詳解】解:由圖可知,對應(yīng)邊AG與CE的延長線交于點B,∴點B為位似中心故選B.【題目點撥】此題考查的是找位似圖形的位似中心,掌握位似圖形的定義是解決此題的關(guān)鍵.7、D【解題分析】利用配方法把二次函數(shù)解析式化為頂點式,根據(jù)二次函數(shù)的性質(zhì)解答.【題目詳解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,則當(dāng)x>﹣2時,y隨x的增大而增大,∴當(dāng)x=時,y的最大值為()2+4×+3=,故選:D.【題目點撥】本題考查配方法把二次函數(shù)解析式化為頂點式根據(jù)二次函數(shù)性質(zhì)解答的運用8、A【解題分析】根據(jù)函數(shù)圖象寫出一次函數(shù)圖象在反比例函數(shù)圖象上方部分的x的取值范圍即可.【題目詳解】解:由圖可知,x>2或﹣1<x<0時,ax+b>.故選A.【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點,利用數(shù)形結(jié)合,準確識圖是解題的關(guān)鍵.9、D【分析】根據(jù)圓的切線的定義、圓的定義、垂徑定理、三角形外接圓的定義逐項判斷即可.【題目詳解】A、垂直于半徑且與圓只有一個交點的直線是圓的切線,此項說法錯誤B、不在同一直線上的三點一定可以作圓,此項說法錯誤C、平分弦(非直徑)的直徑垂直于弦,此項說法錯誤D、每個三角形都有一個外接圓,此項說法正確故選:D.【題目點撥】本題考查了圓的切線的定義、圓的定義、垂徑定理、三角形外接圓的定義,熟記圓的相關(guān)概念和定理是解題關(guān)鍵.10、D【解題分析】A、A盤轉(zhuǎn)出藍色的概率為、B盤轉(zhuǎn)出藍色的概率為,此選項錯誤;B、如果A轉(zhuǎn)盤轉(zhuǎn)出了藍色,那么B轉(zhuǎn)盤轉(zhuǎn)出藍色的可能性不變,此選項錯誤;C、由于A、B兩個轉(zhuǎn)盤是相互獨立的,先轉(zhuǎn)動A轉(zhuǎn)盤再轉(zhuǎn)動B轉(zhuǎn)盤和同時轉(zhuǎn)動兩個轉(zhuǎn)盤,游戲者配成紫色的概率相同,此選項錯誤;D、畫樹狀圖如下:由于共有6種等可能結(jié)果,而出現(xiàn)紅色和藍色的只有1種,所以游戲者配成紫色的概率為,故選D.11、C【分析】證明△ADC∽△CDB,根據(jù)相似三角形的性質(zhì)求出CD、BD,根據(jù)勾股定理求出BC.【題目詳解】∵∠ACB=90°,

∴∠ACD+∠BCD=90°,

∵CD⊥AB,

∴∠A+∠ACD=90°,

∴∠A=∠BCD,又∠ADC=∠CDB,

∴△ADC∽△CDB,

∴,,

∴,即,

解得,CD=6,

∴,

解得,BD=4,

∴BC=,

故選:C.【題目點撥】此題考查相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.12、B【解題分析】根據(jù)中心對稱圖形的概念求解.【題目詳解】A.不是中心對稱圖形;B.是中心對稱圖形;C.不是中心對稱圖形;D.不是中心對稱圖形.故答案選:B.【題目點撥】本題考查了中心對稱圖形,解題的關(guān)鍵是尋找對稱中心,旋轉(zhuǎn)180°后與原圖重合.二、填空題(每題4分,共24分)13、-1【解題分析】把x=0代入方程得k2-1=0,解得k=1或k=-1,而k-1≠0,所以k=-1,故答案為:-1.14、20°.【分析】連接OA、OB,由弧長公式的可求得∠AOB,然后再根據(jù)同弧所對的圓周角等于圓心角的一半可得∠ACB.【題目詳解】解:連接OA、OB,由弧長公式的可求得∠AOB=40°,再根據(jù)同弧所對的圓周角等于圓心角的一半可得∠ACB=20°.故答案為:20°【題目點撥】本題考查弧長公式;圓周角定理,題目難度不大,掌握公式正確計算是解題關(guān)鍵.15、【分析】確定函數(shù)的對稱軸為:,即可求解.【題目詳解】解:函數(shù)的對稱軸為:,故另外一個交點的坐標(biāo)為,故答案為.【題目點撥】本題考查的是拋物線與軸的交點和函數(shù)圖象上點的坐標(biāo)特征,熟練掌握二次函數(shù)與坐標(biāo)軸的交點、二次函數(shù)的對稱軸是解題的關(guān)鍵.16、【分析】根據(jù)菱形的性質(zhì),三角形中位線的性質(zhì)以及勾股定理求出四邊形各邊長,得出規(guī)律求出即可.【題目詳解】∵菱形ABCD中,邊長為10,∠A=60°,設(shè)菱形對角線交于點O,∴,∴,,∴,,順次連結(jié)菱形ABCD各邊中點,

∴△AA1D1是等邊三角形,四邊形A2B2C2D2是菱形,

∴A1D1=AA1=AB=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=AB=5,∴四邊形A2B2C2D2的周長是:5×4=20,

同理可得出:A3D3=5×,C3D3=C1D1=5,A5D5=5,C5D5=C3D3=5,∴四邊形A2019B2019C2019D2019的周長是:故答案為:【題目點撥】本題主要考查了菱形的性質(zhì)以及矩形的性質(zhì)和中點四邊形的性質(zhì)等知識,根據(jù)已知得出邊長變化規(guī)律是解題關(guān)鍵.17、2【分析】設(shè)a+b=t,根據(jù)一元二次方程即可求出答案.【題目詳解】解:設(shè)a+b=t,原方程化為:t(t﹣4)=﹣4,解得:t=2,即a+b=2,故答案為:2【題目點撥】本題考查換元法及解一元二次方程,關(guān)鍵在于整體換元,簡化方程.18、【分析】根據(jù)AB與BC的比是黃金比得到AB∶BC=,連接OE與CD交于點G,過E點作EF⊥AF交AD延長線于F,證明四邊形CEDO是菱形,得到,,即可求出tan∠DAE的值;【題目詳解】解:∵AB與BC的比是黃金比,∴AB∶BC=連接OE與CD交于點G,過E點作EF⊥AF交AD延長線于F,矩形的對角線、相交于點,∵CE∥BD,DE∥AC,∴四邊形CEDO是平行四邊形,又∵是矩形,∴OC=OD,∴四邊形CEDO是菱形(鄰邊相等的平行四邊形是菱形),∴CD與OE垂直且平分,∴,∴,tan∠DAE,故答案為:;【題目點撥】本題主要考查了矩形的性質(zhì)、菱形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、黃金分割比,掌握鄰邊相等的平行四邊形是菱形是解題的關(guān)鍵;三、解答題(共78分)19、(18-6)米【分析】延長BA交過點F的水平線與點C,在Rt△BEF中求出BE的長,在Rt△ACF中求出BC的AC的長,即可求出樹的高度.【題目詳解】延長BA交過點F的水平線與點C,則四邊形BCFE是矩形,∴BC=EF=米,BE=CF,∠EBF=∠BFC=45°,∴BE=EF=米,∴CF=18米,在Rt△ACF中,∵tan∠AFC=,∴AC=,∴AB=(18-)米.【題目點撥】本題考查解直角三角形的應(yīng)用-仰角俯角問題,銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會用構(gòu)建方程的思想思考問題.20、(1)10,24.5,1000;(2)活動前5.31萬人,活動后2.67萬人;(3)p=【分析】(1)用表格中的A組的人數(shù)除以其百分比,得到總?cè)藬?shù)c,運用“百分比=人數(shù)÷總?cè)藬?shù)”及其變形公式即可求出a、b的值;(2)先把活動后各組人數(shù)相加,求出活動后調(diào)查的樣本容量,再運用“百分比=人數(shù)÷總?cè)藬?shù)”求出活動前和活動后全市騎電瓶車“都不戴”安全帽的百分比,再用樣本估計總體;(3)先畫樹狀圖展示所有6種等可能的結(jié)果數(shù),再求汽車和電動車都向左轉(zhuǎn)的概率.【題目詳解】(1)∵,∴,,∴;(2)∵活動后調(diào)查了896+702+224+178=2000人,“都不戴”安全帽的占,∴由此估計活動后全市騎電瓶車“都不戴”安全帽的總?cè)藬?shù):30萬=2.67(萬人);同理:估計活動前全市騎電瓶車“都不戴”安全帽的總?cè)藬?shù):30萬萬人;答:估計活動前和活動后全市騎電瓶車“都不戴”安全帽的總?cè)藬?shù)分別為5.31萬人和2.67萬人;(3)畫樹狀圖:∴共有6種等可能的結(jié)果數(shù),汽車和電動車都向左轉(zhuǎn)的只有1種,∴汽車和電動車都向左轉(zhuǎn)的概率為.【題目點撥】本題綜合考查了概率統(tǒng)計內(nèi)容,讀懂統(tǒng)計圖,了解用樣本估計總體,掌握概率公式是解決問題的關(guān)鍵.21、∠P=50°【解題分析】根據(jù)切線性質(zhì)得出PA=PB,∠PAO=90°,求出∠PAB的度數(shù),得出∠PAB=∠PBA,根據(jù)三角形的內(nèi)角和定理求出即可.【題目詳解】∵PA、PB是⊙O的切線,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直徑,PA是⊙O的切線,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.【題目點撥】本題考查了切線長定理,切線性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)的應(yīng)用,主要考查學(xué)生運用定理進行推理和計算的能力,題目具有一定的代表性,難度適中,熟記切線的性質(zhì)定理是解題的關(guān)鍵.22、(1);(2)值有或【分析】(1)過點作于點,根據(jù),可求出△AOB的面積8,由等腰三角形的三線合一可知△AOD的面積為4,根據(jù)反比例函數(shù)k的幾何意義幾何求出k;

(2)分兩種情況討論:①當(dāng)邊的中點在的圖象上,由條件可知,即可得到C點坐標(biāo)為,從而可求得m;②當(dāng)邊的中點在的圖象上,過點作于點,由條件可知,,因此中點,從而可求得m.【題目詳解】解:(1)過點作于點,如圖1∵,∴,∴,,即(2)①當(dāng)邊的中點在的圖象上,如圖2∵,∴,,點,即∴②當(dāng)邊的中點在的圖象上,過點作于點,如圖3∵,,∴中點即∴綜上所述,符合條件的值有或【題目點撥】本題考查了用待定系數(shù)法求反比例函數(shù)的解析式,掌握直角三角形、等邊三角形的性質(zhì)以及分類討論思想是解題的關(guān)鍵.23、(1)詳見解析;(2)詳見解析.【分析】(1)根據(jù)切線的性質(zhì)得到∠GAF=90°,根據(jù)平行線的性質(zhì)得到AE⊥BC,根據(jù)圓周角定理即可得到結(jié)論;

(2)由DF=2OD,得到OF=3OD=3OC,由得到OC=OD=3OE,推出△COE∽△FOC,根據(jù)相似三角形的性質(zhì)得到∠OCF=∠OEC=90°,于是得到CF是⊙O的切線.【題目詳解】解:(1)是的切線,是的直徑,,,,,,,;(2),,,,,,是的切線.【題目點撥】本題考查了切線的判定和性質(zhì),相似三角形的判定和性質(zhì),根據(jù)切線的判定和性質(zhì)去分析所缺條件是解題的關(guān)鍵.24、(1)開通隧道前,汽車從A地到B地大約要走136.4千米;(2)汽車從A地到B地比原來少走的路程為27.2千米【分析】(1)過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進而求出汽車從A地到B地比原來少走多少路程.【題目詳解】解:(1)過點C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:開通隧道前,汽車從A地到B地大約要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽車從A地到B地比原來少走的路程為27.2千米.【題目點撥】本題考查了勾股定理的運用以及解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.25、(1)y=x2﹣2x﹣1;(2)存在;M(1,﹣2);(1)(1+22,4)或(1﹣22,4)或(1,﹣4).【解題分析】(1)由于拋物線y=x2+bx+c與x軸交于A(-1,0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論