版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆江蘇銅山縣數(shù)學(xué)九上期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,AB是圓O的直徑,CD是圓O的弦,若,則()A. B. C. D.2.如圖,四邊形ABCD中,∠A=90°,AB=8,AD=6,點M,N分別為線段BC,AB上的動點(含端點,但點M不與點B重合),點E,F(xiàn)分別為DM,MN的中點,則EF長度的最大值為()A.8 B.6 C.4 D.53.下列是一元二次方程的是()A.2x+1=0 B.x2+2x+3=0 C.y2+x=1 D.=14.如圖,一根電線桿垂直于地面,并用兩根拉線,固定,量得,,則拉線,的長度之比()A. B. C. D.5.下列對拋物線y=-2(x-1)2+3性質(zhì)的描寫中,正確的是(
)A.開口向上 B.對稱軸是直線x=1 C.頂點坐標(biāo)是(-1,3) D.函數(shù)y有最小值6.下列說法中,正確的是()A.不可能事件發(fā)生的概率為0B.隨機事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生D.投擲一枚質(zhì)地均勻的硬幣100次,正面朝上的次數(shù)一定為50次7.拋物線y=﹣2x2經(jīng)過平移得到y(tǒng)=﹣2(x+1)2﹣3,平移方法是()A.向左平移1個單位,再向下平移3個單位 B.向左平移1個單位,再向上平移3個單位C.向右平移1個單位,再向下平移3個單位 D.向右平移1個單位,再向上平移3個單位8.如圖,⊙O中,點D,A分別在劣弧BC和優(yōu)弧BC上,∠BDC=130°,則∠BOC=()A.120° B.110° C.105° D.100°9.關(guān)于x的一元二次方程x2+ax﹣1=0的根的情況是()A.沒有實數(shù)根 B.只有一個實數(shù)根C.有兩個相等的實數(shù)根 D.有兩個不相等的實數(shù)根10.在同一坐標(biāo)系中一次函數(shù)和二次函數(shù)的圖象可能為()A. B. C. D.11.如圖,在△ABC中,M,N分別是邊AB,AC的中點,則△AMN的面積與四邊形MBCN的面積比為A. B. C. D.12.在Rt△ABC中,∠C=90°,AC=4,BC=3,則是A. B. C. D.二、填空題(每題4分,共24分)13.如圖,在⊙O中,AB是⊙O的弦,CD是⊙O的直徑,CD⊥AB于點M,若AB=CM=4,則⊙O的半徑為_____.14.如圖,在平面直角坐標(biāo)系中,點,點,作第一個正方形且點在上,點在上,點在上;作第二個正方形且點在上,點在上,點在上…,如此下去,其中縱坐標(biāo)為______,點的縱坐標(biāo)為______.15.若關(guān)于的一元二次方程有實數(shù)根,則的取值范圍是__________.16.如圖,△ABC繞點A逆時針旋轉(zhuǎn)得到△AB′C′,點C在AB'上,點C的對應(yīng)點C′在BC的延長線上,若∠BAC'=80°,則∠B=______度.17.如圖,平面直角坐標(biāo)系中,⊙P與x軸分別交于A、B兩點,點P的坐標(biāo)為(3,-1),AB=2.將⊙P沿著與y軸平行的方向平移,使⊙P與軸相切,則平移距離為_____.18.如圖,從一塊直徑為的圓形紙片上剪出一個圓心角為的扇形,使點在圓周上.將剪下的扇形作為一個圓錐的側(cè)面,則這個圓錐的底面圓的半徑是________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標(biāo)系中,△ABC頂點的坐標(biāo)分別為A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2,且A?B?C位于點C的異側(cè),并表示出點A1的坐標(biāo).(2)作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C.(3)在(2)的條件下求出點B經(jīng)過的路徑長(結(jié)果保留π).20.(8分)央視舉辦的《主持人大賽》受到廣泛的關(guān)注.某中學(xué)學(xué)生會就《主持人大賽》節(jié)目的喜愛程度,在校內(nèi)對部分學(xué)生進行了問卷調(diào)查,并對問卷調(diào)查的結(jié)果分為“非常喜歡”、“比較喜歡”、“感覺一般”、“不太喜歡”四個等級,分別記作、、、.根據(jù)調(diào)查結(jié)果繪制出如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:(1)本次被調(diào)查對象共有人;扇形統(tǒng)計圖中被調(diào)查者“比較喜歡”等級所對應(yīng)圓心角的度數(shù)為.(2)將條形統(tǒng)計圖補充完整,并標(biāo)明數(shù)據(jù);(3)若選“不太喜歡”的人中有兩個女生和兩個男生,從選“不太喜歡”的人中挑選兩個學(xué)生了解不太喜歡的原因,請用列舉法(畫樹狀圖或列表),求所選取的這兩名學(xué)生恰好是一男一女的概率.21.(8分)裝潢公司要給邊長為6米的正方形墻面ABCD進行裝潢,設(shè)計圖案如圖所示(四周是四個全等的矩形,用材料甲進行裝潢;中心區(qū)是正方形MNPQ,用材料乙進行裝潢).兩種裝潢材料的成本如下表:材料甲乙價格(元/米2)5040設(shè)矩形的較短邊AH的長為x米,裝潢材料的總費用為y元.(1)MQ的長為米(用含x的代數(shù)式表示);(2)求y關(guān)于x的函數(shù)解析式;(3)當(dāng)中心區(qū)的邊長不小于2米時,預(yù)備資金1760元購買材料一定夠用嗎?請說明理由.22.(10分)如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=10cm,P為BC的中點,動點Q從點P出發(fā),沿射線PC方向以cm/s的速度運動,以P為圓心,PQ長為半徑作圓.設(shè)點Q運動的時間為t秒.(1)當(dāng)t=2.5s時,判斷直線AB與⊙P的位置關(guān)系,并說明理由.(2)已知⊙O為Rt△ABC的外接圓,若⊙P與⊙O相切,求t的值.23.(10分)某居民小區(qū)要在一塊一邊靠墻的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為32m的柵欄圍成(如圖所示).如果墻長16m,滿足條件的花園面積能達到120m2嗎?若能,求出此時BC的值;若不能,說明理由.24.(10分)如圖是四個全等的小矩形組成的圖形,這些矩形的頂點稱為格點.△ABC是格點三角形(頂點是格點的三角形)(1)若每個小矩形的較短邊長為1,則BC=;(2)①在圖1、圖2中分別畫一個格點三角形(頂點是格點的三角形),使它們都與△ABC相似(但不全等),且圖1,2中所畫三角形也不全等).②在圖3中只用直尺(沒有刻度)畫出△ABC的重心M.(保留痕跡,點M用黑點表示,并注上字母M)25.(12分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.(1)如圖(1),連接AF、CE.①四邊形AFCE是什么特殊四邊形?說明理由;②求AF的長;(2)如圖(2),動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.26.一個不透明的布袋里裝有3個白球,1個黑球和若干個紅球,它們除顏色外其余都相同,從中任意摸出1個球,是白球的概率.(1)布袋里紅球有多少個?(2)先從布袋中摸出1個球后不放回,再摸出1個球,求出兩次都摸到白球的概率.
參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)同弧所對的圓周角相等可得,再根據(jù)圓直徑所對的圓周角是直角,可得,再根據(jù)三角形內(nèi)角和定理即可求出的度數(shù).【題目詳解】∵∴∵AB是圓O的直徑∴∴故答案為:A.【題目點撥】本題考查了圓內(nèi)接三角形的角度問題,掌握同弧所對的圓周角相等、圓直徑所對的圓周角是直角、三角形內(nèi)角和定理是解題的關(guān)鍵.2、D【分析】根據(jù)三角形中位線定理可知EF=DN,求出DN的最大值即可.【題目詳解】解:如圖,連結(jié)DN,
∵DE=EM,F(xiàn)N=FM,
∴EF=DN,
當(dāng)點N與點B重合時,DN的值最大即EF最大,
在Rt△ABD中,∵∠A=90°,AD=6,AB=8,
∴,
∴EF的最大值=BD=1.
故選:D.【題目點撥】本題考查了三角形中位線定理、勾股定理等知識,解題的關(guān)鍵是中位線定理的靈活應(yīng)用,學(xué)會轉(zhuǎn)化的思想,屬于中考??碱}型.3、B【分析】根據(jù)一元二次方程的定義,即只含一個未知數(shù),且未知數(shù)的最高次數(shù)為1的整式方程,對各選項分析判斷后利用排除法求解.【題目詳解】解:A、方程1x+1=0中未知數(shù)的最高次數(shù)不是1,是一元一次方程,故不是一元二次方程;B、方程x1+1x+3=0只含一個未知數(shù),且未知數(shù)的最高次數(shù)為1的整式方程,故是一元二次方程;C、方程y1+x=1含有兩個未知數(shù),是二元二次方程,故不是一元二次方程;D、方程=1不是整式方程,是分式方程,故不是一元二次方程.故選:B.【題目點撥】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是1.是否符合定義的條件是作出判斷的關(guān)鍵.4、D【分析】根據(jù)銳角三角函數(shù)可得:和,從而求出.【題目詳解】解:在Rt△AOP中,,在Rt△BOP中,,∴故選D.【題目點撥】此題考查的是銳角三角函數(shù),掌握銳角三角函數(shù)的定義是解決此題的關(guān)鍵.5、B【分析】由拋物線的解析式可求得開口方向、對稱軸及頂點坐標(biāo),再逐一進行判斷即可.【題目詳解】解:A、∵?2<0,∴拋物線的開口向下,故A錯誤,不符合題意;B、拋物線的對稱軸為:x=1,故B正確,符合題意;C、拋物線的頂點為(1,3),故C錯誤,不符合題意;D、因為開口向下,故該函數(shù)有最大值,故D錯誤,不符合題意.故答案為:B.【題目點撥】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x?h)2+k中,頂點坐標(biāo)為(h,k),對稱軸為x=h.6、A【解題分析】試題分析:不可能事件發(fā)生的概率為0,故A正確;隨機事件發(fā)生的概率為在0到1之間,故B錯誤;概率很小的事件也可能發(fā)生,故C錯誤;投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)為50次是隨機事件,D錯誤;故選A.考點:隨機事件.7、A【分析】由拋物線y=?2x2得到頂點坐標(biāo)為(0,0),而平移后拋物線y=?2(x+1)2?3的頂點坐標(biāo)為(?1,?3),根據(jù)頂點坐標(biāo)的變化尋找平移方法.【題目詳解】根據(jù)拋物線y=?2x2得到頂點坐標(biāo)為(0,0),而平移后拋物線y=?2(x+1)2?3的頂點坐標(biāo)為(?1,?3),∴平移方法為:向左平移1個單位,再向下平移3個單位.故選:A.【題目點撥】本題主要考查了拋物線的平移,熟練掌握相關(guān)概念是解題關(guān)鍵.8、D【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì),對角互補可知,∠D+∠BAC=180°,求出∠D,再利用圓周角定理即可得出.【題目詳解】解:∵四邊形ABDC為圓內(nèi)接四邊形∴∠A+∠BDC=180°∵∠BDC=130°∴∠A=50°∴∠BOC=2∠A=100°故選:D.【題目點撥】本題考查了圓內(nèi)接四邊形的性質(zhì),圓周角定理,掌握圓內(nèi)接四邊形的性質(zhì)是解題的關(guān)鍵.9、D【解題分析】∵△=>0,∴方程有兩個不相等的實數(shù)根.故選D.10、A【題目詳解】根據(jù)二次函數(shù)的解析式可得:二次函數(shù)圖像經(jīng)過坐標(biāo)原點,則排除B和C,A選項中一次函數(shù)a>0,b<0,二次函數(shù)a>0,b<0,符合題意.故選A.【題目點撥】本題考查了(1)、一次函數(shù)的圖像;(2)、二次函數(shù)的圖像11、B【題目詳解】解:∵M,N分別是邊AB,AC的中點,∴MN是△ABC的中位線,∴MN∥BC,且MN=BC,∴△AMN∽△ABC,∴,∴△AMN的面積與四邊形MBCN的面積比為1:1.故選B.【題目點撥】本題考查了相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是得出MN是△ABC的中位線,判斷△AMN∽△ABC,要掌握相似三角形的面積比等于相似比平方.12、A【分析】根據(jù)題意畫出圖形,由勾股定理求出AB的長,再根據(jù)三角函數(shù)的定義解答即可.【題目詳解】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB==5,∴sinA=,故選A.【題目點撥】本題考查銳角三角函數(shù)的定義.關(guān)鍵是熟練掌握在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.二、填空題(每題4分,共24分)13、2.1【分析】連接OA,由垂徑定理得出AM=AB=2,設(shè)OC=OA=x,則OM=4﹣x,由勾股定理得出AM2+OM2=OA2,得出方程,解方程即可.【題目詳解】解:連接OA,如圖所示:∵CD是⊙O的直徑,CD⊥AB,∴AM=AB=2,∠OMA=90°,設(shè)OC=OA=x,則OM=4﹣x,根據(jù)勾股定理得:AM2+OM2=OA2,即22+(4﹣x)2=x2,解得:x=2.1;故答案為:2.1.【題目點撥】本題考查了垂徑定理、勾股定理、解方程;熟練掌握垂徑定理,并能進行推理計算是解決問題的關(guān)鍵.14、【分析】先確定直線AB的解析式,然后再利用正方形的性質(zhì)得出點C1和C2的縱坐標(biāo),歸納規(guī)律,然后按規(guī)律求解即可.【題目詳解】解:設(shè)直線AB的解析式y(tǒng)=kx+b則有:,解得:所以直線仍的解析式是:設(shè)C1的橫坐標(biāo)為x,則縱坐標(biāo)為∵正方形OA1C1B1∴x=y,即,解得∴點C1的縱坐標(biāo)為同理可得:點C2的縱坐標(biāo)為=∴點Cn的縱坐標(biāo)為.故答案為:,.【題目點撥】本題屬于一次函數(shù)綜合題,主要考查了運用待定系數(shù)法求一次函數(shù)的解析式、正方形的性質(zhì)、一次函數(shù)圖象上點的坐標(biāo)特點等知識,掌握數(shù)形結(jié)合思想是解答本題的關(guān)鍵.15、【分析】一元二次方程有實數(shù)根,即【題目詳解】解:一元二次方程有實數(shù)根解得【題目點撥】本題考查與系數(shù)的關(guān)系.16、1【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)即可得到結(jié)論.【題目詳解】解:∵△ABC繞點A逆時針旋轉(zhuǎn)得到△AB′C′,∴∠C′AB′=∠CAB,AC′=AC,∵∠BAC'=80°,∴∠C′AB′=∠CAB=C′AB=40°,∴∠ACC′=70°,∴∠B=∠ACC′﹣∠CAB=1°,故答案為:1.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的外角的性質(zhì),正確的識別圖形是解題的關(guān)鍵.17、1或1【分析】過點P作PC⊥x軸于點C,連接PA,由垂徑定理得⊙P的半徑為2,因為將⊙P沿著與y軸平行的方向平移,使⊙P與軸相切,分兩種情況進行討論求值即可.由【題目詳解】解:過點P作PC⊥x軸于點C,連接PA,AB=,,點P的坐標(biāo)為(1,-1),PC=1,,將⊙P沿著與y軸平行的方向平移,使⊙P與軸相切,①當(dāng)沿著y軸的負方向平移,則根據(jù)切線定理得:PC=PA=2即可,因此平移的距離只需為1即可;②當(dāng)沿著y軸正方向移動,由①可知平移的距離為3即可.故答案為1或1.【題目點撥】本題主要考查圓的基本性質(zhì)及切線定理,關(guān)鍵是根據(jù)垂徑定理得到圓的半徑,然后進行分類討論即可.18、【分析】連接BC,根據(jù)圓周角定理求出BC是⊙O的直徑,BC=12cm,根據(jù)勾股定理求出AB,再根據(jù)弧長公式求出半徑r.【題目詳解】連接BC,由題意知∠BAC=90°,∴BC是⊙O的直徑,BC=12cm,∵AB=AC,∴,∴(cm),設(shè)這個圓錐的底面圓的半徑是rcm,∵,∴,∴r=(cm),故答案為:.【題目點撥】此題考查圓周角定理,弧長公式,勾股定理,連接BC得到BC是圓的直徑是解題的關(guān)鍵.三、解答題(共78分)19、(1)見解析,A1(3,﹣3);(2)見解析;(3)【分析】(1)延長BC到B1,使B1C=2BC,延長AC到A1,使A1C=2AC,再順次連接即可得△A1B1C,再寫出A1坐標(biāo)即可;(2)分別作出A,B繞C點順時針旋轉(zhuǎn)90°后的對應(yīng)點A2,B2,再順次連接即可得△A2B2C.(3)點B的運動路徑為以C為圓心,圓心角為90°的弧長,利用弧長公式即可求解.【題目詳解】解:(1)如圖,△A1B1C為所作,點A1的坐標(biāo)為(3,﹣3);(2)如圖,△A2B2C為所作;(3)CB=,所以點B經(jīng)過的路徑長=π.【題目點撥】本題考查網(wǎng)格作圖與弧長計算,熟練掌握位似與旋轉(zhuǎn)作圖,以及弧長公式是解題的關(guān)鍵.20、(1)50;144;(2)詳見解析;(3).【分析】(1)根據(jù)A組的人數(shù)及占比即可求解被調(diào)查對象的總?cè)藬?shù),再求出D,B的占比即可求出被調(diào)查者“比較喜歡”等級所對應(yīng)圓心角的度數(shù);(2)求出各組的人數(shù)即可作圖;(3)根據(jù)題意列表表示出所有情況,再利用概率公式即可求解.【題目詳解】(1)本次被調(diào)查對象共有16÷32%=50,D的占比為4÷50=8%,故B的占比為1-32%-20%-8%=40%∴扇形統(tǒng)計圖中被調(diào)查者“比較喜歡”等級所對應(yīng)圓心角的度數(shù)為360°×40%=144°,故答案為:50;144(2)B組的人數(shù)為50×40%=20(人),C組的人數(shù)為50×20%=10(人),∴補全條形統(tǒng)計圖如下:(3)依題意列表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)∴(恰好選中一名男生和一名女生).【題目點撥】此題主要考查統(tǒng)計調(diào)查及概率的求解,解題的關(guān)鍵是根據(jù)題意列出表格表示所有情況.21、(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)預(yù)備資金4元購買材料一定夠用,理由見解析【分析】(1)根據(jù)大正方形的邊長減去兩個小長方形的寬即可求解;
(1)根據(jù)總費用等于兩種材料的費用之和即可求解;
(3)利用二次函數(shù)的性質(zhì)和最值解答即可.【題目詳解】解:(1)∵AH=GQ=x,AD=6,
∴MQ=6-1x;
故答案為:6-1x;(1)根據(jù)題意,得AH=x,AE=6﹣x,S甲=4S長方形AENH=4x(6﹣x)=14x﹣4x1,S乙=S正方形MNQP=(6﹣1x)1=36﹣14x+4x1.∴y=50(14x﹣4x1)+40(36﹣14x+4x1)=﹣40x1+140x+2.答:y關(guān)于x的函數(shù)解析式為y=﹣40x1+140x+2.(3)預(yù)備資金4元購買材料一定夠用.理由如下:∵y=﹣40x1+140x+2=﹣40(x-3)1+1800,由﹣40<0,可知拋物線開口向下,在對稱軸的左側(cè),y隨x的增大而增大.由x-3=0可知,拋物線的對稱軸為直線x=3.∴當(dāng)x<3時,y隨x的增大而增大.∵中心區(qū)的邊長不小于1米,即6﹣1x≥1,解得x≤1,又x>0,∴0<x≤1.當(dāng)x=1時,y=﹣40(x-3)1+1800=﹣40(1-3)1+1800=4,∴當(dāng)0<x≤1時,y≤4.∴預(yù)備資金4元購買材料一定夠用.答:預(yù)備資金4元購買材料一定夠用.【題目點撥】此題主要考查了二次函數(shù)的應(yīng)用以及配方法求最值和正方形的性質(zhì)等知識,正確得出各部分的邊長是解題關(guān)鍵.22、(1)相切,證明見解析;(2)t為s或s【分析】(1)直線AB與⊙P關(guān)系,要考慮圓心到直線AB的距離與⊙P的半徑的大小關(guān)系,作PH⊥AB于H點,PH為圓心P到AB的距離,在Rt△PHB中,由勾股定理PH,當(dāng)t=2.5s時,求出PQ的長,比較PH、PQ大小即可,(2)OP為兩圓的連心線,圓P與圓O內(nèi)切rO-rP=OP,圓O與圓P內(nèi)切,rP-rO=OP即可.【題目詳解】(1)直線AB與⊙P相切.理由:作PH⊥AB于H點,∵∠ACB=90°,∠ABC=30°,AC=10,∴AB=2AC=20,BC=,∵P為BC的中點∴BP=∴PH=BP=,當(dāng)t=2.5s時,PQ=,∴PH=PQ=∴直線AB與⊙P相切,(2)連結(jié)OP,∵O為AB的中點,P為BC的中點,∴OP=AC=5,∵⊙O為Rt△ABC的外接圓,∴AB為⊙O的直徑,∴⊙O的半徑OB=10,∵⊙P與⊙O相切,∴PQ-OB=OP或OB-PQ=OP即t-10=5或10-t=5,∴t=或t=,故當(dāng)t為s或s時,⊙P與⊙O相切.【題目點撥】本題考查直線與圓的位置關(guān)系,圓與圓相切時求運動時間t問題,關(guān)鍵點到直線的距離與半徑是否相等,會求點到直線的距離,會用t表示半徑與點到直線的距離,抓住兩圓相切分清情況,由圓心在圓O內(nèi),沒有外切,只有內(nèi)切,要會分類討論,掌握圓P與圓O內(nèi)切rO-rP=OP,圓O與圓P內(nèi)切,rP-rO=OP.23、花園的面積能達到20m2,此時BC的值為2m.【分析】設(shè)AB=xm,則BC=(32﹣2x)m,根據(jù)矩形的面積公式結(jié)合花園面積為20m2,即可得出關(guān)于x的一元二次方程,解之即可得出x的值,結(jié)合墻的長度可確定x的值,進而可得出BC的長度.【題目詳解】設(shè)AB=xm,則BC=(32﹣2x)m,依題意,得:x(32﹣2x)=20,整理,得:x2﹣16x+60=0,解得:x1=6,x2=1.∵32﹣2x≤16,∴x≥8,∴x=1,32﹣2x=2.答:花園的面積能達到20m2,此時BC的值為2m.【題目點撥】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解答本題的關(guān)鍵.24、(1);(2)①見解析;②見解析【分析】(1)根據(jù)勾股定理,計算BC即可;(2)①根據(jù)圖形,令∠B′A′C′=∠BAC,且使得△A′B′C′與△ABC相似比為作出圖(1)即可;令∠B″A″C″=∠BAC,△A″B″C″與△ABC相似比為2作出圖(2)即可;②根據(jù)格點圖形的特征,以及中點的定義,連接格點如圖所示,則交點M即為所求.【題目詳解】解:(1)BC==;故答案為:;(2)①如圖1,2所示:∠B′A′C′=∠BAC,△A′B′C′與△ABC相似比為,∠B″A″C″=∠BAC,△A″B″C″與△ABC相似比為2即為所求作圖形;②如圖3所示:利用格點圖形的特征,中點的定義,作出點M即為所求.【題目點撥】本題考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)字化營銷在零售行業(yè)中的應(yīng)用
- 2025年全球及中國虛擬購物平臺行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球長焊頸法蘭行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球碳纖維管狀編織物行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球集成存儲解決方案行業(yè)調(diào)研及趨勢分析報告
- 思想道德修養(yǎng)與法律基礎(chǔ)
- 羅湖區(qū)政府投資項目代建合同范本
- 水電專業(yè)承包合同
- 政府采購項目的采購合同
- 大型高炮廣告牌制作合同
- 人教版五年級上冊數(shù)學(xué)簡便計算大全600題及答案
- 2016-2023年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年考點試題甄選合集含答案解析
- 政治單招考試重點知識點
- 專題01 中華傳統(tǒng)文化-中考英語時文閱讀專項訓(xùn)練
- 北京四合院介紹課件
- 頁眉和頁腳基本知識課件
- 《國有企業(yè)采購操作規(guī)范》【2023修訂版】
- 土法吊裝施工方案
- BLM戰(zhàn)略規(guī)劃培訓(xùn)與實戰(zhàn)
- GB/T 16475-2023變形鋁及鋁合金產(chǎn)品狀態(tài)代號
- 鎖骨遠端骨折伴肩鎖關(guān)節(jié)脫位的治療
評論
0/150
提交評論