2024屆內(nèi)蒙古鄂爾多斯附屬學(xué)校數(shù)學(xué)九上期末綜合測試模擬試題含解析_第1頁
2024屆內(nèi)蒙古鄂爾多斯附屬學(xué)校數(shù)學(xué)九上期末綜合測試模擬試題含解析_第2頁
2024屆內(nèi)蒙古鄂爾多斯附屬學(xué)校數(shù)學(xué)九上期末綜合測試模擬試題含解析_第3頁
2024屆內(nèi)蒙古鄂爾多斯附屬學(xué)校數(shù)學(xué)九上期末綜合測試模擬試題含解析_第4頁
2024屆內(nèi)蒙古鄂爾多斯附屬學(xué)校數(shù)學(xué)九上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆內(nèi)蒙古鄂爾多斯附屬學(xué)校數(shù)學(xué)九上期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.某校校園內(nèi)有一個大正方形花壇,如圖甲所示,它由四個邊長為3米的小正方形組成,且每個小正方形的種植方案相同.其中的一個小正方形ABCD如圖乙所示,DG=1米,AE=AF=x米,在五邊形EFBCG區(qū)域上種植花卉,則大正方形花壇種植花卉的面積y與x的函數(shù)圖象大致是()A. B. C. D.2.如圖,已知,分別為正方形的邊,的中點,與交于點,為的中點,則下列結(jié)論:①,②,③,④.其中正確結(jié)論的有()A.個 B.個 C.個 D.個3.下列一元二次方程中,沒有實數(shù)根的是()A. B.C. D.4.如圖,在菱形ABCD中,對角線AC、BD相交于點O,,則四邊形AODE一定是()A.正方形 B.矩形 C.菱形 D.不能確定5.如果用線段a、b、c,求作線段x,使,那么下列作圖正確的是()A. B.C. D.6.已知線段MN=4cm,P是線段MN的黃金分割點,MP>NP,那么線段MP的長度等于()A.(2+2)cm B.(2﹣2)cm C.(+1)cm D.(﹣1)cm7.已知線段CD是由線段AB平移得到的,點A(–1,4)的對應(yīng)點為C(4,7),則點B(–4,–1)的對應(yīng)點D的坐標(biāo)為()A.(1,2) B.(2,9) C.(5,3) D.(–9,–4)8.如圖,D是等邊△ABC外接圓上的點,且∠CAD=20°,則∠ACD的度數(shù)為()A.20° B.30° C.40° D.45°9.如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點,點A的坐標(biāo)為(1,),則點C的坐標(biāo)為()A.(-,1) B.(-1,) C.(,1) D.(-,-1)10.若一個三角形的兩條邊的長度分別為2和4,且第三條邊的長度是方程的解,則它的周長是()A.10 B.8或10 C.8 D.611.下列各點中,在反比例函數(shù)圖象上的是()A.(3,1) B.(-3,1) C.(3,) D.(,3)12.在平面直角坐標(biāo)系中,把點繞原點順時針旋轉(zhuǎn),所得到的對應(yīng)點的坐標(biāo)為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,點E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長為_______.14.一個4米高的電線桿的影長是6米,它臨近的一個建筑物的影長是36米.則這個建筑的高度是_____m.15.某農(nóng)場擬建兩間矩形飼養(yǎng)室,一面靠現(xiàn)有墻(墻足夠長),中間用一道墻隔開,并在如圖所示的三處各留1m寬的門.已知計劃中的材料可建墻體(不包括門)總長為27m,則能建成的飼養(yǎng)室面積最大為________

m2.16.如圖,AD:DB=AE:EC,若∠ADE=58°,則∠B=_____.17.關(guān)于的方程有一個根,則另一個根________.18.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠C=140°,則∠BOD=____°.三、解答題(共78分)19.(8分)如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.(1)求m,k,n的值;(2)求△ABC的面積.20.(8分)如圖,在矩形ABCD中,AB=3,BC=4,點E是線段AC上的一個動點且=k(0<k<1),點F在線段BC上,且DEFH為矩形;過點E作MN⊥BC,分別交AD,BC于點M,N.(1)求證:△MED∽△NFE;(2)當(dāng)EF=FC時,求k的值.(3)當(dāng)矩形EFHD的面積最小時,求k的值,并求出矩形EFHD面積的最小值.21.(8分)如圖,已知直線與兩坐標(biāo)軸分別交于A、B兩點,拋物線經(jīng)過點A、B,點P為直線AB上的一個動點,過P作y軸的平行線與拋物線交于C點,拋物線與x軸另一個交點為D.(1)求圖中拋物線的解析式;(2)當(dāng)點P在線段AB上運動時,求線段PC的長度的最大值;(3)在直線AB上是否存在點P,使得以O(shè)、A、P、C為頂點的四邊形是平行四邊形?若存在,請求出此時點P的坐標(biāo),若不存在,請說明理由.22.(10分)如圖,在正方形網(wǎng)格上有以及一條線段.請你以為一條邊.以正方形網(wǎng)格的格點為頂點畫一個,使得與相似,并求出這兩個三角形的相似比.23.(10分)某超市為慶祝開業(yè)舉辦大酬賓抽獎活動,凡在開業(yè)當(dāng)天進店購物的顧客,都能獲得一次抽獎的機會,抽獎規(guī)則如下:在一個不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、3、4的4個小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機取出一個小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再從盒子中隨機取出一個小球,記下小球上標(biāo)有的數(shù)字,并計算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為8,則可獲得50元代金券一張;若所得的數(shù)字之和為6,則可獲得30元代金券一張;若所得的數(shù)字之和為5,則可獲得15元代金券一張;其他情況都不中獎.(1)請用列表或樹狀圖(樹狀圖也稱樹形圖)的方法(選其中一種即可),把抽獎一次可能出現(xiàn)的結(jié)果表示出來;(2)假如你參加了該超市開業(yè)當(dāng)天的一次抽獎活動,求能中獎的概率P.24.(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象相交于A(2,2),B(n,4)兩點,連接OA、OB.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)求△AOB的面積;(3)在直角坐標(biāo)系中,是否存在一點P,使以P、A、O、B為頂點的四邊形是平行四邊形?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.25.(12分)如圖,在平面直角坐標(biāo)系xOy中,點A(,3),B(,2),C(0,).(1)以y軸為對稱軸,把△ABC沿y軸翻折,畫出翻折后的△;(2)在(1)的基礎(chǔ)上,①以點C為旋轉(zhuǎn)中心,把△順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△;②點的坐標(biāo)為,在旋轉(zhuǎn)過程中點經(jīng)過的路徑的長度為_____(結(jié)果保留π).26.一個不透明的口袋中有1個大小、質(zhì)地完全相同的乒乓球,球面上分別標(biāo)有數(shù)-1,2,-3,1.(1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數(shù)是負數(shù)的概率為________.(2)搖勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.

參考答案一、選擇題(每題4分,共48分)1、A【解題分析】試題分析:S△AEF=AE×AF=,S△DEG=DG×DE=×1×(3﹣x)=,S五邊形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG==,則y=4×()=,∵AE<AD,∴x<3,綜上可得:(0<x<3).故選A.考點:動點問題的函數(shù)圖象;動點型.2、B【分析】根據(jù)正方形的性質(zhì)可得,然后利用SAS即可證出,根據(jù)全等三角形的性質(zhì)可得:,根據(jù)直角三角形的性質(zhì)和三角形的內(nèi)角和,即可判斷①;根據(jù)中線的定義即可判斷②;設(shè)正方形的邊長為,根據(jù)相似三角形的判定證出,列出比例式,即可判斷③;過點作于,易證△AMN∽△AFB,列出比例式,利用勾股定理求出ME、MF和MB即可判斷④.【題目詳解】解:在正方形中,,,、分別為邊,的中點,,在和中,,,,,,故①正確;是的中線,,,故②錯誤;設(shè)正方形的邊長為,則,在中,,,,,,即,解得:,,,故③正確;如圖,過點作于,∴∴△AMN∽△AFB∴,即,解得,,根據(jù)勾股定理,,,,故④正確.綜上所述,正確的結(jié)論有①③④共3個故選:B.【題目點撥】此題考查的是正方形的性質(zhì)、全等三角形的判定及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.3、A【解題分析】試題分析:A.∵△=25﹣4×2×4=﹣7<0,∴方程沒有實數(shù)根,故本選項正確;B.∵△=36﹣4×1×4=0,∴方程有兩個相等的實數(shù)根,故本選項錯誤;C.∵△=16﹣4×5×(﹣1)=36>0,∴方程有兩個相等的實數(shù)根,故本選項錯誤;D.∵△=16﹣4×1×3=4>0,∴方程有兩個相等的實數(shù)根,故本選項錯誤;故選A.考點:根的判別式.4、B【分析】根據(jù)題意可判斷出四邊形AODE是平行四邊形,再由菱形的性質(zhì)可得出AC⊥BD,即∠AOD=90°,繼而可判斷出四邊形AODE是矩形;【題目詳解】證明:∵DE∥AC,AE∥BD,∴四邊形AODE是平行四邊形,∵四邊形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四邊形AODE是矩形.故選B.【題目點撥】本題考查了菱形的性質(zhì)、矩形的判定與性質(zhì)、平行四邊形的判定;熟練掌握矩形的判定與性質(zhì)、菱形的性質(zhì)是解決問題的關(guān)鍵.5、B【分析】利用比例式a:b=c:x,與已知圖形作對比,可以得出結(jié)論.【題目詳解】A、a:b=x:c與已知a:b=c:x不符合,故選項A不正確;B、a:b=c:x與已知a:b=c:x符合,故選項B正確;C、a:c=x:b與已知a:b=c:x不符合,故選項C不正確;D、a:x=b:c與已知a:b=c:x不符合,故選項D不正確;故選:B.【題目點撥】本題考查了平行線分線段成比例定理、復(fù)雜作圖,熟練掌握平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例.6、B【解題分析】根據(jù)黃金分割的定義進行作答.【題目詳解】由黃金分割的定義知,,又MN=4,所以,MP=22.所以答案選B.【題目點撥】本題考查了黃金分割的定義,熟練掌握黃金分割的定義是本題解題關(guān)鍵.7、A【解題分析】∵線段CD是由線段AB平移得到的,而點A(?1,4)的對應(yīng)點為C(4,7),∴由A平移到C點的橫坐標(biāo)增加5,縱坐標(biāo)增加3,則點B(?4,?1)的對應(yīng)點D的坐標(biāo)為(1,2).故選A8、C【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠D=180°-∠B=120°,根據(jù)三角形內(nèi)角和定理計算即可.【題目詳解】∴∠B=60°,∵四邊形ABCD是圓內(nèi)接四邊形,∴∠D=180°?∠B=120°,∴∠ACD=180°?∠DAC?∠D=40°,故選C.9、A【解題分析】試題分析:作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.如圖:過點A作AD⊥x軸于D,過點C作CE⊥x軸于E,根據(jù)同角的余角相等求出∠OAD=∠COE,再利用“角角邊”證明△AOD和△OCE全等,根據(jù)全等三角形對應(yīng)邊相等可得OE=AD,CE=OD,然后根據(jù)點C在第二象限寫出坐標(biāo)即可.∴點C的坐標(biāo)為(-,1)故選A.考點:1、全等三角形的判定和性質(zhì);2、坐標(biāo)和圖形性質(zhì);3、正方形的性質(zhì).10、A【分析】本題先利用因式分解法解方程,然后利用三角形三邊之間的數(shù)量關(guān)系確定第三邊的長,最后求出周長即可.【題目詳解】解:,,∴;由三角形的三邊關(guān)系可得:腰長是4,底邊是2,所以周長是:2+4+4=10.故選A.【題目點撥】本題考察了一元二次方程的解法與三角形三邊之間的數(shù)量關(guān)系.11、A【分析】根據(jù)反比例函數(shù)的性質(zhì)可得:反比例函數(shù)圖像上的點滿足xy=3.【題目詳解】解:A、∵3×1=3,∴此點在反比例函數(shù)的圖象上,故A正確;

B、∵(-3)×1=-3≠3,∴此點不在反比例函數(shù)的圖象上,故B錯誤;C、∵,∴此點不在反比例函數(shù)的圖象上,故C錯誤;D、∵,∴此點不在反比例函數(shù)的圖象上,故D錯誤;故選A.12、C【分析】根據(jù)題意得點P點P′關(guān)于原點的對稱,然后根據(jù)關(guān)于原點對稱的點的坐標(biāo)特點即可得解.【題目詳解】∵P點坐標(biāo)為(3,-2),∴P點的原點對稱點P′的坐標(biāo)為(-3,2).故選C.【題目點撥】本題主要考查坐標(biāo)與圖形變化-旋轉(zhuǎn),解此題的關(guān)鍵在于熟練掌握其知識點.二、填空題(每題4分,共24分)13、5.【題目詳解】試題解析:過E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點:1.正方形的性質(zhì);2.三角形的面積;3.勾股定理.14、24米.【分析】先設(shè)建筑物的高為h米,再根據(jù)同一時刻物高與影長成正比列出關(guān)系式求出h的值即可.【題目詳解】設(shè)建筑物的高為h米,由題意可得:則4:6=h:36,解得:h=24(米).故答案為24米.【題目點撥】本題考查的是相似三角形的應(yīng)用,熟知同一時刻物高與影長成正比是解答此題的關(guān)鍵.15、75【解題分析】試題分析:首先設(shè)垂直于墻面的長度為x,則根據(jù)題意可得:平行于墻面的長度為(30-3x),則S=x(30-3x)=-3+75,,則當(dāng)x=5時,y有最大值,最大值為75,即飼養(yǎng)室的最大面積為75平方米.考點:一元二次方程的應(yīng)用.16、58°【分析】根據(jù)已知條件可證明△ADE∽△ABC,利用相似三角形的性質(zhì)即可得∠B的度數(shù).【題目詳解】∵AD:DB=AE:EC,∴AD:AB=AE:AC,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∵∠ADE=58°,∴∠B=58°,故答案為:58°【題目點撥】本題考查了相似三角形的判定和性質(zhì),從相似求兩個三角形的相似比到對應(yīng)角相等.17、2【分析】由根與系數(shù)的關(guān)系,根據(jù)兩根之和為計算即可.【題目詳解】∵關(guān)于的方程有一個根,

解得:;

故答案為:.【題目點撥】本題考查了一元二次方程根與系數(shù)的關(guān)系,熟記根與系數(shù)的關(guān)系的結(jié)構(gòu)是解題的關(guān)鍵.18、80【解題分析】∵∠A+∠C=180°,∴∠A=180°?140°=40°,∴∠BOD=2∠A=80°.故答案為80.三、解答題(共78分)19、(1)m=1,k=8,n=1;(2)△ABC的面積為1.【解題分析】試題分析:(1)由點A的縱坐標(biāo)為2知OC=2,由OD=OC知OD=1、CD=3,根據(jù)△ACD的面積為6求得m=1,將A的坐標(biāo)代入函數(shù)解析式求得k,將點B坐標(biāo)代入函數(shù)解析式求得n;(2)作BE⊥AC,得BE=2,根據(jù)三角形面積公式求解可得.試題解析:(1)∵點A的坐標(biāo)為(m,2),AC平行于x軸,∴OC=2,AC⊥y軸,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面積為6,∴CD?AC=6,∴AC=1,即m=1,則點A的坐標(biāo)為(1,2),將其代入y=可得k=8,∵點B(2,n)在y=的圖象上,∴n=1;(2)如圖,過點B作BE⊥AC于點E,則BE=2,∴S△ABC=AC?BE=×1×2=1,即△ABC的面積為1.考點:反比例函數(shù)與一次函數(shù)的交點問題.20、(1)見解析;(2);(3)矩形EFHD的面積最小值為,k=.【分析】(1)由矩形的性質(zhì)得出∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,證出∠EMD=∠FNE=90°,∠NEF=∠MDE,即可得出△MED∽△NFE;(2)設(shè)AM=x,則MD=NC=4﹣x,由三角函數(shù)得出ME=x,得出NE=3﹣x,由相似三角形的性質(zhì)得出=,求出NF=x,得出FC=4﹣x﹣x=4﹣x,由勾股定理得出EF==,當(dāng)EF=FC時,得出方程4﹣x=,解得x=4(舍去),或x=,進而得出答案;(3)由相似三角形的性質(zhì)得出==,得出DE=EF,求出矩形EFHD的面積=DE×EF=EF2==,由二次函數(shù)的性質(zhì)進而得出答案.【題目詳解】(1)證明:∵四邊形ABCD是矩形,∴∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,∵MN⊥BC,∴MN⊥AD,∴∠EMD=∠FNE=90°,∵四邊形DEFH是矩形,∴∠MED+∠NEF=90°,∴∠NEF=∠MDE,∴△MED∽△NFE;(2)解:設(shè)AM=x,則MD=NC=4﹣x,∵tan∠DAC=tan∠MAE===,∴ME=x,∴NE=3﹣x,∵△MED∽△NFE,∴=,即=,解得:NF=x,∴FC=4﹣x﹣x=4﹣x,EF==,當(dāng)EF=FC時,4﹣x=,解得:x=4或x=,由題意可知x=4不合題意,當(dāng)x=時,AE=,∵AC===5,∴k==;(3)解:由(1)可知:△MED∽△NFE,∴,∴DE=EF,∴矩形EFHD的面積=DE×EF=EF2==∴當(dāng)x﹣=0時,即x=時,矩形EFHD的面積最小,最小值為:,∵cos∠MAE===,∴AE=AM=×=,此時k==.【題目點撥】本題考查了矩形與相似三角形,以及二次函數(shù)的應(yīng)用,解題的關(guān)鍵是利用相似三角形的性質(zhì)建立二次函數(shù)模型是解題的關(guān)鍵.21、(1);(2)當(dāng)時,線段PC有最大值是2;(3),,【分析】把x=0,y=0分別代入解析式可求點A,點B坐標(biāo),由待定系數(shù)法可求解析式;設(shè)點C,可求PC,由二次函數(shù)的性質(zhì)可求解;設(shè)點P的坐標(biāo)為(x,?x+2),則點C,分三種情況討論,由平行四邊形的性質(zhì)可出點P的坐標(biāo).【題目詳解】解:(1)可求得A(0,2),B(4,0)∵拋物線經(jīng)過點A和點B∴把(0,2),(4,0)分別代入得:解得:∴拋物線的解析式為.(2)設(shè)點P的坐標(biāo)為(x,?x+2),則C()∵點P在線段AB上∴∴當(dāng)時,線段PC有最大值是2(3)設(shè)點P的坐標(biāo)為(x,?x+2),∵PC⊥x軸,∴點C的橫坐標(biāo)為x,又點C在拋物線上,∴點C(x,)①當(dāng)點P在第一象限時,假設(shè)存在這樣的點P,使四邊形AOPC為平行四邊形,則OA=PC=2,即,化簡得:,解得x1=x2=2把x=2代入則點P的坐標(biāo)為(2,1)②當(dāng)點P在第二象限時,假設(shè)存在這樣的點P,使四邊形AOCP為平行四邊形,則OA=PC=2,即,化簡得:,解得:把,則點P的坐標(biāo)為;③當(dāng)點P在第四象限時,假設(shè)存在這樣的點P,使四邊形AOCP為平行四邊形,則OA=PC=2,即,化簡得:,解得:把則點P的坐標(biāo)為綜上,使以O(shè)、A.

P、C為頂點的四邊形是平行四邊形,滿足的點P的坐標(biāo)為.【題目點撥】本題是二次函數(shù)綜合題,考查待定系數(shù)法求函數(shù)解析式,最值問題,平行四邊形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用分類討論的思想解決問題.22、圖見解析,與的相似比是.【分析】可先選定BC與DE為對應(yīng)邊,對應(yīng)邊之比為1:2,據(jù)此來選定點F的位置,相似比亦可得.【題目詳解】解:如圖,與相似.理由如下:由勾股定理可求得,,BC=2,;,DE=4,,∴,∴∽,相似比是.【題目點撥】此題主要考查了相似三角形的判定與性質(zhì),利用網(wǎng)格得出三角形各邊長度是解題關(guān)鍵.23、(1)列表見解析;(2).【解題分析】試題分析:(1)首先根據(jù)題意畫出表格,然后由表格求得所有等可能的結(jié)果;(2、)根據(jù)概率公式進行解答即可.試題解析:(1)列表得:

1

2

3

4

1

2

3

4

5

2

3

4

5

6

3

4

5

6

7

4

5

6

7

8

(2)由列表可知,所有可能出現(xiàn)的結(jié)果一共有16種,這些結(jié)果出現(xiàn)的可能性相同,其中兩次所得數(shù)字之和為8、6、5的結(jié)果有8種,所以抽獎一次中獎的概率為:P==.答:抽獎一次能中獎的概率為.考點:列表法與樹狀圖法24、(1)一次函數(shù)的解析式為,反比例函數(shù)的解析式為;(2)的面積為;(3)存在,點的坐標(biāo)為(-3,-6),(1,-2)(3,6).【分析】(1)根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征可求出k2和n的值,可得反比例函數(shù)解析式,再利用待定系數(shù)法即可求出一次函數(shù)的解析式;(2)設(shè)一次函數(shù)與軸交于點,過點、分別向軸作垂線,垂足為點、,令x=0,可求出點C的坐標(biāo),根據(jù)即可得答案;(3)分OA、OB、AB為對角線三種情況,根據(jù)A、B坐標(biāo)可得直線OA、OB的解析式,根據(jù)互相平行的兩條直線斜率相同可知直線OP、AP、BP的斜率,利用待定系數(shù)法可求出其解析式,進而聯(lián)立解析式求出交點坐標(biāo)即可得答案.【題目詳解】(1)∵點,在反比例函數(shù)上,∴,,∴,,∴,,∵點,在一次函數(shù)上,∴,,∴,,∴,∴一次函數(shù)的解析式為,反比例函數(shù)的解析式為.(2)如圖,設(shè)一次函數(shù)與y軸交于點,過點、分別向軸作垂線,垂足為點、,∵當(dāng)時,,∴點的坐標(biāo)為,∵,,∴,,∴,即的面積為.(3)∵點A(2,2),B(-1,-4),∴直線OA的解析式為y=x,直線OB的解析式為y=4x,直線AB的解析式為y=2x-2,①如圖,當(dāng)OA//PB,OP//AB時,∴直線OP的解析式為y=2x+b1,設(shè)直線PB的解析式為y=x+b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論