聚合物混改性原理納米復(fù)合材料課件_第1頁(yè)
聚合物混改性原理納米復(fù)合材料課件_第2頁(yè)
聚合物混改性原理納米復(fù)合材料課件_第3頁(yè)
聚合物混改性原理納米復(fù)合材料課件_第4頁(yè)
聚合物混改性原理納米復(fù)合材料課件_第5頁(yè)
已閱讀5頁(yè),還剩108頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

聚合物共混改性原理

————聚合物納米復(fù)合材料張琴

聚合物共混改性原理

————聚合物納米復(fù)合材料張琴1復(fù)合體系組合分散相的尺度大小>1000nm(>1μm)100~1000nm(0.1~1μm)1~100nm(0.001~0.1μm,10~1000?)0.5~10nm(5~100?)(1)聚合物/低分子物低分子作增容劑低分子流變改性劑外部熱塑性聚合物(2)聚合物/聚合物宏觀相分離型聚合物摻混物微觀相分離型聚合物合金(1)分子復(fù)合物;(2)完全相容型聚合物合金(3)聚合物/填充物聚合物/填充物復(fù)合體系聚合物/填充物復(fù)合體系聚合物/超細(xì)粒子填充復(fù)合體系聚合物納米復(fù)合體系聚合物復(fù)合體系的分類(lèi)復(fù)合體系分散相的尺度大小>1000nm100~1000nm12納米概念的形成早期,石墨、炭黑中的顆粒1959年,美國(guó)物理學(xué)家RichardFeynman提出“whatwouldhappenifwecouldarrangetheatomsonebyonethewaywewantthem?”20世紀(jì)70年代康乃爾大學(xué)C.G.Granqvist&R.A.Buhrman小組氣相沉積制備納米20世紀(jì)80年代,原西德Gleiter首次制備金屬納米,提出納米材料及其應(yīng)用1981年,IBM發(fā)明AFM和STM,推動(dòng)納米技術(shù)發(fā)展20世紀(jì)80年代末期,日本豐田研究中心制得PA6/粘土納米復(fù)合材料納米概念的形成早期,石墨、炭黑中的顆粒3WhatnanocompositesareNanocompositesaremadebymixingtwoormorephase,suchasparticles,layersorfibres,whereatleastoneofthephasesisinthenanometresizerange.Becausethebuildingblocksmakingupthenanocompositesarethereforesoclosetothemolecularscale,confinementandquantumeffectsresultfromthewaythattheblocksinteract.Nanocompositesshowpropertiesnotfoundinbulkmaterials,differentiatingthemfromtypicalcompositesorfilled-polymersystems.WhatnanocompositesareNanocom4納米復(fù)合材料非聚合物納米復(fù)合材料金屬/金屬金屬/陶瓷陶瓷/陶瓷聚合物納米復(fù)合材料有機(jī)/無(wú)機(jī)納米復(fù)合材料聚合物/聚合物納米復(fù)合材料聚合物基無(wú)機(jī)物基分子復(fù)合原位復(fù)合微纖/基體Classificationofnanocomposite

納米復(fù)合材料非聚合物金屬/金屬聚合物有機(jī)/無(wú)機(jī)聚合物/聚合物5Polymer/inorganicnanocomposites

Polymernanocompositesaregenerallydefinedasthecombinationofapolymermatrixresinandinorganicparticles(particles,layersorfibres)whichhaveatleastonedimension(i.e.length,width,orthickness)inthenanometersizerange

Polymer/inorganicnanocomposi6制備聚合物納米復(fù)合材料的無(wú)機(jī)物的種類(lèi)

納米粒子(CaCO3、SiO2、TiO2、ZnO、Al2O3、Cr2O3)納米纖維(碳納米管、纖維素晶須、凹凸棒土)層狀無(wú)機(jī)物

制備聚合物納米復(fù)合材料的無(wú)機(jī)物的種類(lèi)納米粒子(CaCO37LayeredhostcrystalssusceptibletointercalationbyapolymerLayeredhostcrystalssuscepti8蒙脫土的化學(xué)通式:Nax(H2O)4{(AL2~xMgx)[Si4O10](OH)2}

分類(lèi):鈉基蒙脫土(堿性土)鈣基蒙脫土(堿土性土)天然漂白土(酸性土)蒙脫土的化學(xué)通式:分類(lèi):9蒙脫土的改性方法人工鈉化改型(懸浮液法、堆場(chǎng)鈉化法、擠壓法)酸活化方法(干法活化工藝、濕法活化工藝)蒙脫土的改性方法人工鈉化改型(懸浮液法、堆場(chǎng)鈉化法、擠壓法)10濕法生產(chǎn)工藝:包裝原土破碎制漿提純改型活化有機(jī)覆蓋過(guò)濾干燥粉碎覆蓋劑干法生產(chǎn)工藝:包裝原土制漿提純1提純2改型活化精細(xì)鈉土加熱混合干燥粉碎覆蓋劑濕法生產(chǎn)工藝:包裝原土破碎制漿提純改型活化有機(jī)覆蓋過(guò)濾干燥粉11Structureof2:1layeredsilicates蒙脫土的結(jié)構(gòu)特征---天然的納米結(jié)構(gòu)Structureof2:1layeredsilic12Cation-exchangereactionbetweenthesilicateandthealkylammoniumsalt蒙脫土族礦物具有離子交換性、吸水性、膨脹性、觸變性、黏結(jié)性、吸附性等特性Cation-exchangereactionbetwe13插層劑的作用利用離子交換的原理進(jìn)入蒙脫土片層之間;擴(kuò)張片層間距;改善層間的微環(huán)境;使蒙脫土的內(nèi)外表面由親水性轉(zhuǎn)化為疏水性;增強(qiáng)蒙脫土片層與聚合物分子鏈之間的親和性;降低硅酸鹽材料的表面能。常用的插層劑有烷基銨鹽、季銨鹽、吡啶類(lèi)衍生物和其他陽(yáng)離子型表面活性劑插層劑的作用利用離子交換的原理進(jìn)入蒙脫土片層之間;常用的插層14聚合物混改性原理納米復(fù)合材料課件15聚合物/層狀硅酸鹽納米復(fù)合材料特點(diǎn)需要填料體積分?jǐn)?shù)少;具有優(yōu)良的熱穩(wěn)定性及尺寸穩(wěn)定性;性?xún)r(jià)比高。聚合物/層狀硅酸鹽納米復(fù)合材料特點(diǎn)需要填料體積分?jǐn)?shù)少;16PolymerlayeredNanocompositespreparationIn-situintercalationpolymerization

tointercalatethemonomerandthentakeadvantageofthehost’soxidisingpropertiestoinducepolymerizationPolymerintercalationfromsolution

Polymermeltintercalation

tomixthepolymerandlayeredsilicatetogetherandthenheatthemixtureabovetheglasstransitiontemperature(softeningpoint)ofthepolymerExfoliation-adsorptionTemplatesynthesisPolymerlayeredNanocomposites17InsituPolymerizationInsituPolymerization18Schematicrepresentationofin-situpolymerizationSchematicrepresentationofin19聚合物大分子溶液插層工藝示意圖聚合物大分子溶液插層工藝示意圖20SchematicrepresentationofmeltintercalationSchematicrepresentationofme21聚合物混改性原理納米復(fù)合材料課件22制備方法的改進(jìn)利用共聚物制納米復(fù)合材料(PS、PMMA);利用聚合物催化劑制納米復(fù)合材料(PS、PET);利用相容劑制納米復(fù)合材料(PP);利用環(huán)狀低聚物的開(kāi)環(huán)聚合制納米復(fù)合材料(PC);硬質(zhì)環(huán)氧樹(shù)脂納米復(fù)合材料的制備(硬質(zhì)環(huán)氧樹(shù)脂)。制備方法的改進(jìn)利用共聚物制納米復(fù)合材料(PS、PMMA);23NaokiHasegawa,etal,Polymer44(2003)2933–2937anovelcompoundingprocessusingNa–montmorillonitewaterslurryforpreparingnovelnylon6/Na–montmorillonitenanocompositesNaokiHasegawa,etal,Polymer24NaokiHasegawa,etal,Polymer44(2003)2933–2937NaokiHasegawa,etal,Polymer25LayeredNanocompositestructureLayeredNanocompositestructur26聚合物混改性原理納米復(fù)合材料課件27PLS納米復(fù)合材料微觀結(jié)構(gòu)的分類(lèi)表PLS納米復(fù)合材料微觀結(jié)構(gòu)的分類(lèi)表28SchematicdepictingtheXRDpatternsforvarioustypesofstructuresSchematicdepictingtheXRDpa29聚合物混改性原理納米復(fù)合材料課件30聚合物混改性原理納米復(fù)合材料課件31ThenewpropertiesofnanocompositesEfficientreinforcementwithminimallossofductilityandimpactstrengthIncreasethermalstabilityIncreaseflameretardantImprovedgasbarrierpropertiesImprovedionicconductivityReducedthermalexpansioncoefficientAlteredelectronicandopticalpropertiesThenewpropertiesofnanocomp32PropertiesofNylon-6layeredsilicatenanocompositesPropertyNanocompositesNylon-6TensileModulus(GPa)TensileStrength(MPa)HeatDistortionTemp(℃)ImpactStrength(KJ/m2)WaterAdsorption(%)CoefficientThermalExpansion(x,y)2.11071602.80.516.3×10-51.169652.30.8713×10-5

PropertiesofNylon-6layered33聚合物混改性原理納米復(fù)合材料課件34聚合物混改性原理納米復(fù)合材料課件35Organoclay(wt%)dependenceofHDTofneatPLAandvariousPLACNs.(b)LoaddependenceofHDTofneatPLAandPLACN7Organoclay(wt%)dependenceof36TGAcurvesforpolystyrene,PSandthenanocompositesTGAcurvesforpolystyrene,PS37Proposedmodelforthetorturouszigzagdiffusionpathinanexfoliatedpolymer–clay

nanocompositewhenusedasagasbarrierProposedmodelforthetorturo38ComparisonofcombustionofNylon6,6andNylon6,6nanocompositewithclayfractionof5wt.-%(Cloisite15A)atexternalfluxof35Kw/m2ComparisonofcombustionofNy39PP及其納米復(fù)合材料的熱釋放速率對(duì)比(熱通量=35kW/m2)PP及其納米復(fù)合材料的熱釋放速率對(duì)比40RealpictureofbiodegradabilityofneatPLAandPLACN4recoveredfromcompostwithtime.Initialshapeofthecrystallizedsampleswas3*10*0.1cm3.Realpictureofbiodegradabili41Degreeofbiodegradation(i.e.CO2evolution),and(b)time-dependentchangeofmatrixMwofneatPLAandPLACN4(MEEclay=4wt%)undercompostat(58+

2)oCDegreeofbiodegradation(i.e.42聚合物混改性原理納米復(fù)合材料課件43聚合物納米復(fù)合材料的問(wèn)題無(wú)機(jī)相分布不規(guī)則;無(wú)機(jī)相形態(tài)難控制;存在界面問(wèn)題;分散方法需改進(jìn)。聚合物納米復(fù)合材料的問(wèn)題無(wú)機(jī)相分布不規(guī)則;44MorphologyoflayeredsilicateMorphologyoflayeredsilicate45KineticsofpolymermeltintercalationTwostepsfornanocompositeformation:Polymertransportedfromtheagglomerate-polymermeltinterfacetotheprimaryparticlesPolymermeltpenetratetotheedgesofthecrystallites

ThefirststepislimitingstepforpolymernanocompositesformationKineticsofpolymermeltinter46Thermodynamicanalysis△F=F(h)-F(h0)=△E-T△S

△F<0indicatelayerseparationisfavorable△F>0impliestheinitialunintercalatedstateisfavorable△S≈△Schain+△SpolymerThermodynamicanalysis47InfluencefactorsofpolymerintercalationOriginalpropertiesofsilicatePolymerarchitectureinteractionbetweensurfaceandpolymera.Organicallymodifiedlayeredsilicatessurfaceb.AddingafractionoffunctionalizedpolymersProcessconditionInfluencefactorsofpolymeri48WAXDpatternsoforganicallymodifiedclay:(a)smectiteclaymodifiedwithC8,C12,andC16phosphoniumsalt;(b)smectite,MMT,andmicaclaymodifiedwithC16phosphoniumsaltWAXDpatternsoforganicallym49BrightfieldTEMimagesofmeltcompoundednanocompositescontaining,3wt%MMTbasedon(a)HMW,(b)MMW,and(c)LMWN6BrightfieldTEMimagesofmel50SchematicillustrationofOMLSdispersionprocessinPP-g-MAmatrixSchematicillustrationofOMLS51ThreecasesinvolvingtheinterplayduringmeltprocessingProcessconditionH.R.Dennisetal./Polymer42(2001)9513–9522Threecasesinvolvingtheinte52IllustratesschematicallyhowplateletspeelapartundertheactionofshearH.R.Dennisetal./Polymer42(2001)9513–9522Illustratesschematicallyhow53Thekeyoftheformationofnanocompositesis:

thereareenoughinteractionbetweenpolymerandlayersilicatessothattheintercalationandexfoliationcanoccurThekeyoftheformationof54X-raydiffractionscansfor(a)nylon6;(b)nylon6/untreatedmont.(c)Nylon6/treatedmont.(10wt%mont.)CrystallizationbehaviorX-raydiffractionscansfor(a55聚合物混改性原理納米復(fù)合材料課件56SteadyshearviscosityasafunctionofshearrateforaseriesofhybridsofPDMS/MMTRheologybehaviordelaminatedintercalatedSteadyshearviscosityasafu57TemperaturedependenceofG′;G″andtandforN6matrixandvariousN6CNs.TemperaturedependenceofG′;58P.J.Yoonetal./Polymer43(2002)6727–6741P.J.Yoonetal./59納米復(fù)合材料的表征方法X-射線衍射法:測(cè)定層狀化合物或?qū)訝罟杷猁}材料的層間距激光光散射方法:測(cè)定超細(xì)顆粒的(或納米粒子)的分布曲線TEM方法AFM方法(AtomicForceMicrostropy)SEM與圖像分析儀納米復(fù)合材料的表征方法X-射線衍射法:測(cè)定層狀化合物或?qū)訝罟?0利用X射線衍射測(cè)量蒙脫土層間距的原理圖Bragg方程:

λ=2dsinθ利用X射線衍射測(cè)量蒙脫土層間距的原理圖Bragg方程:61聚合物/無(wú)機(jī)納米復(fù)合材料的應(yīng)用

——聚酰胺/層狀硅酸鹽納米復(fù)合材料聚合物/無(wú)機(jī)納米復(fù)合材料的應(yīng)用

—62有機(jī)粘土層間距與ω-氨基酸碳鏈長(zhǎng)度的關(guān)系1:ω-氨基酸插層粘土2:ε-己內(nèi)酰胺插層有機(jī)粘土(25℃)3:ε-己內(nèi)酰胺插層有機(jī)粘土(100℃)

有機(jī)粘土的制備有機(jī)粘土層間距與ω-氨基酸碳鏈長(zhǎng)度的關(guān)系有機(jī)粘土的制備63Alkylchainaggregationinlayeredsilicates:(a)lateralmonolayer;(b)lateralbilayer;(c)paraffin-typemonolayerand(d)paraffin-typebilayer

Alkylchainaggregationinlay64原位聚合制備PA6/粘土納米復(fù)合材料ε-己內(nèi)酰胺水解聚合反應(yīng)示意圖圖中Pn表示生成的聚合物分子鏈的聚合度

原位聚合制備PA6/粘土納米復(fù)合材料ε-己內(nèi)酰胺水解聚合反應(yīng)65合成粘土及PA6/粘土納米復(fù)合材料的X射線衍射圖譜

合成粘土及PA6/粘土納米復(fù)合材料的X射線衍射圖譜66PA6/粘土納米復(fù)合材料的TEM照片

PA6/粘土納米復(fù)合材料的TEM照片67聚合物混改性原理納米復(fù)合材料課件68普通PA6與PA6/合成粘土的WAXD譜線

普通PA6與PA6/合成粘土的WAXD譜線69普通PA6與PA6/合成粘土的DSC曲線普通PA6與PA6/合成粘土的DSC曲線70普通PA6與n-PA6(4%)的流變曲線普通PA6與n-PA6(4%)的流變曲線71普通PA6與n-PA6的性能對(duì)比普通PA6與n-PA6的性能對(duì)比72不同填充材料填充PA6時(shí)復(fù)合材料的彎曲模量對(duì)比不同填充材料填充PA6時(shí)復(fù)合材料的彎曲模量對(duì)比73

PA6與n-PA6材料薄膜對(duì)水、氧氣的阻隔性能比較(1atm=101325Pa)PA6與n-PA6材料薄膜對(duì)水、氧氣的阻隔性能比較(1at74應(yīng)用應(yīng)用75熔融插層制備PA6/層狀硅酸鹽納米復(fù)合材料

無(wú)機(jī)粘土插層劑有機(jī)粘土PA6樹(shù)脂螺桿擠出PLS納米復(fù)合材料聚合物熔體插層制備PA6/粘土納米復(fù)合材料的流程圖熔融插層制備PA6/層狀硅酸鹽納米復(fù)合材料無(wú)機(jī)粘土插層劑有76

PA6及其納米復(fù)合材料的X射線衍射譜線1:PA6;2:PA6/粘土納米復(fù)合材料PA6及其納米復(fù)合材料的X射線衍射譜線77PA6及其納米復(fù)合材料的DSC升溫曲線PA6/粘土納米復(fù)合材料的DSC降溫曲線PA6及其納米復(fù)合材料的DSC升溫曲線PA6/粘土納米復(fù)合材78蒙脫土填充量對(duì)PA6結(jié)晶度與過(guò)冷度的影響蒙脫土填充量對(duì)PA6結(jié)晶度與過(guò)冷度的影響79蒙脫土的含量對(duì)n-PA6材料楊氏模量的影響蒙脫土的含量對(duì)n-PA6材料彎曲性能的影響蒙脫土的含量對(duì)n-PA6材料楊氏模量的影響蒙脫土的含量對(duì)n-80蒙脫土的含量對(duì)n-PA6材料沖擊性能的影響蒙脫土的含量對(duì)n-PA6材料熱變形溫度的影響蒙脫土的含量對(duì)n-PA6材料沖擊性能的影響蒙脫土的含量對(duì)n-81熔體插層PP納米復(fù)合材料熔體插層PP納米復(fù)合材料82TEMphotographofPP/MMTnanocomposite(5wt%MMTcontent)

TEMphotographofPP/MMTnanoc83TEMphotographsofPP/MMTtraditionalcomposites

(a)PP-A(b)PP-B

TEMphotographsofPP/MMTtrad84SEMimagesoffracturedsurfaceatdifferentmixingtime

1min3min5min

8min12min20minSEMimagesoffracturedsurfac85TheWAXDprofileschangeswiththeincreaseofmixingtime(PP:MI=8.0g/10min)

TheWAXDprofileschangeswith86shearshearPrimaryparticlesagglomeratescrystallite

(a)particlesbecamesmallerundershear

Schematicoftheformationofnanocompositeviameltintercalation

(b)polymerchainsdispersion(c)intercalationandexfoliationoccurshearshearPrimaryparticlesagg87Schematicofmorphologicaldevelopmentduring

blending

t=0t=1mint=5mint=20minorSchematicofmorphologicaldev88(a)static(b)dynamic

TEMphotographsofPP/MMTnanocomposites(MMTcontent:5wt%)

(a)static89Sheardirection2d-WAXDdiagramsofpurePPandPP/MMTnanocomposites(5wt%MMT)preparedatTmelt=220℃,f=0.2Hz

(a-1)PP,static(a-2)PP,dynamic(b-1)PP-5,static(b-2)PP-5,dynamic

Sheardirection2d-WAXDdiagram90Halpin-Tsai‘continuum’Equations

Halpin-Tsai‘continuum’Equati91

ThetheoreticaltensilemodulusatdifferentNtogetherwithexperimentaldatainthePP/MMTnanocompositesThetheoreticaltensilemodul92stress-straincurvesofPP/MMTnanocomposites

Engineeringstress-straincurvesstress-straincurvesofPP/MM93truestress-straincurvesstress-straincurvesofPP/MMTnanocompositestruestress-straincurvesstres942d-WAXDdiagramsofPP/MMTnanocomposites(3wt%MMTcontent)measuredforindicatedstrainduringstretchingunderload(a)εt=0(b)εt=0.6(c)εt=1.2

2d-WAXDdiagramsofPP/MMTnan95PPPP-1PP-3PLMmicrographsofthedifferentsamplescrystallizationat130℃

PP96

DifferentcrystallitedataofthesamplesfromSAXSSampledc(nm)L(nm)da(nm)Xc(%)PP3.414.511.123.4PP-12.513.911.418.0PP-32.513.611.118.4PP-52.513.410.918.7PP-A3.114.211.121.8

Differentcrystallitedataof97

tpofthesamplesatdifferentcrystallizationtemperature

tpofthesamplesatdifferen98TheDSCthermogramsofsamples

heatingscancoolingscanTheDSCthermogramsofsamples99ThevariouscrystallizationparametersofthesamplesfromDSCSampleTc(℃)Tm(℃)△Hc(J/g)△Hf(J/g)Xc(%)PP111.3166.1-85.861.729.5PP-1123.0164.5-84.856.527.3PP-3119.3166.8-88.758.528.8PP-5119.7166.4-85.965.533.0

Thevariouscrystallizationpa100ApplicationofPPnanocompositesPPthinfilmforfoodpackageEngineeringPPplasticsforAutobumperandsafetyhelmetApplicationofPPnanocomposit101ApplicationofPETSyntheticfibersFilmsBottlesEngineeringplasticsPETnanocompositesApplicationofPETSyntheticfi102

PETnanocompositesforbeerpackaging1.HugemarketofbeerpackagingTherewere305billion(305,000,000,000)beercontainersallovertheworldin2001.Andtheamountsareincreasingstablyeveryyear.Ithadreachednearly20milliontonbeerinChinain2002whichwilloverruntheU.S.Aandbecomethetoponewhosebeerproductionarrangedintheworld.

Everydevelopedcountryarestudyingplasticbeerbottletooccupythishugemarket.PETnanocompositesforbeerp103Sortsofbeerbottlesecuritytransparencyweightyprice(bottle)GlassbottleNo(easytoexplode)transparentHeavy(670ml,bottleweight540g)cheapMetallictinYesopaqueMiddle(250ml,bottleweight35g)expensivePlasticbottleYestransparentLight(670ml,bottleweight50g)wellsituated2.NecessityofdevelopingplasticbeerbottleSortsofbeerbottlepriceGl1043.StatusofPETbeerpackagingbottle

AdvantageofPETpackaging:

?lightweight(easytotransport)?unbreakable(hardtobreakup)

?transparent(youcanseetheinnerobject)?nontoxic,odorless?cheap

ThemarketofPETpackagingmaterialisboomingupinrecentyear.3.StatusofPETbeerpackagin105

limitsofPETforbeerpackaging:

notenoughoxygen-barriercapability(oxygengastransmissionrateofPETisabout2.1x10-5cm3.mm/cm2.hr.atm,asthebeerbottleit’sORTmustlowerthan3.8x10-6cm3.mm/cm2.hr.atm

)

lowheat-resistant(Bassterilizationofbeerat80℃)PETpackagingmaterialsmadeofgeneralPETresincannottocontainoxygen-sensitiveproducts.ButmodifiedPETcanbeusedinbeerbottle,itisthemostimportanttoimprovetheoxygen-barriercapability.limitsofPETforbeerp106PropertiesofPETlayeredsilicatenanocompositesPropertyNanocompositesPETTensileModulus(GPa)TensileStrength(MPa)Flexural

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論