五年級奧數(shù)行程接送問題(ABC級)學(xué)生版_第1頁
五年級奧數(shù)行程接送問題(ABC級)學(xué)生版_第2頁
五年級奧數(shù)行程接送問題(ABC級)學(xué)生版_第3頁
五年級奧數(shù)行程接送問題(ABC級)學(xué)生版_第4頁
五年級奧數(shù)行程接送問題(ABC級)學(xué)生版_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

接送問題接送問題知識框架知識框架校車問題——行走過程描述隊伍多,校車少,校車來回接送,隊伍不斷步行和坐車,最終同時到達(dá)目的地,即到達(dá)目的地的最短時間,不要求證明。二、常見接送問題類型根據(jù)校車速度(來回不同)、班級速度(不同班不同速)、班數(shù)是否變化分類為四種常見題型:(1)車速不變-班速不變-班數(shù)2個(最常見)

(2)車速不變-班速不變-班數(shù)多個

(3)車速不變-班速變-班數(shù)2個

(4)車速變-班速不變-班數(shù)2個三、標(biāo)準(zhǔn)解法:畫圖+列3個式子1、總時間=一個隊伍坐車的時間+這個隊伍步行的時間;2、班車走的總路程;3、一個隊伍步行的時間=班車同時出發(fā)后回來接它的時間。例題精講例題精講某校和某工廠之間有一條公路,該校下午2時派車去該廠接某勞模來做報告,往返需用1小時.這位勞模在下午1時便離廠步行向?qū)W校走來,途中遇到接他的汽車,便立刻上車駛向?qū)W校,在下午2時40分到達(dá).問:汽車速度是勞模步行速度的幾倍?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答車下午2時從學(xué)校出發(fā),如圖,在點與勞模相遇,再返回點,共用時40分鐘,由此可知,在從到用了分鐘,也就是2時20分在點與勞模相遇.此時勞模走了1小時20分,也就是80分鐘.另一方面,汽車走兩個需要1小時,也就是從點走到點需要30分鐘,而前面說走完需要20分鐘,所以走完要10分鐘,也就是說.走完,勞模用了80分鐘;走完,汽車用了20分鐘.勞模用時是汽車的4倍,而汽車行駛距離是勞模的2倍,所以汽車的速度是勞模速度的倍.【答案】倍張工程師每天早上點準(zhǔn)時被司機從家接到廠里。一天,張工程師早上點就出了門,開始步行去廠里,在路上遇到了接他的汽車,于是,他就上車行完了剩下的路程,到廠時提前分鐘。這天,張工程師還是早上點出門,但分鐘后他發(fā)現(xiàn)有東西沒有帶,于是回家去取,再出門后在路上遇到了接他的汽車,那么這次他比平常要提前分鐘到廠?!究键c】行程問題之接送問題 【難度】☆☆☆ 【題型】解答第一次提前分鐘是因為張工程師自己走了一段路,從而導(dǎo)致汽車不需要走那段路的來回,所以汽車開那段路的來回應(yīng)該是分鐘,走一個單程是分鐘,而汽車每天點到張工程師家里,所以那天早上汽車是點接到工程師的,張工程師走了分鐘,這段路如果是汽車開需要分鐘,所以汽車速度是張工程師步行速度的5倍,第二次,實際上相當(dāng)于張工程師提前半小時出發(fā),時間是遇到汽車之后的5倍,則張工程師走了分鐘時遇到司機,此時提前(分鐘)。【答案】分鐘A、B兩個連隊同時分別從兩個營地出發(fā)前往一個目的地進行演習(xí),A連有卡車可以裝載正好一個連的人員,為了讓兩個連隊的士兵同時盡快到達(dá)目的地,A連士兵坐車出發(fā)一定時間后下車讓卡車回去接B連的士兵,兩營的士兵恰好同時到達(dá)目的地,已知營地與目的地之間的距離為32千米,士兵行軍速度為8千米/小時,卡車行駛速度為40千米每小時,求兩營士兵到達(dá)目的地一共要多少時間?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答由于卡車的速度為士兵行軍速度的5倍,因此卡車折回時已走的路程是B連士兵遇到卡車時已走路程的3倍,而卡車折回所走的路程是B連士兵遇到卡車時已走路程的2倍,卡車接到B連士兵后,還要行走3倍B連士兵遇到卡車時已走路程才能追上A連士兵,此時他們已經(jīng)到達(dá)了目的地,因此總路程相當(dāng)于4倍B連士兵遇到卡車時已走路程,所以B連士兵遇到卡車時已走路程為8千米,而卡車的總行程為(3+2+3)×8=64千米,這一段路,卡車行駛了64÷40=8/5小時,即1小時36分鐘這也是兩營士兵到達(dá)目的地所花的時間.【答案】1小時36分鐘甲班與乙班學(xué)生同時從學(xué)校出發(fā)去公園,兩班的步行速度相等都是千米/小時,學(xué)校有一輛汽車,它的速度是每小時千米,這輛汽車恰好能坐一個班的學(xué)生.為了使兩班學(xué)生在最短時間內(nèi)到達(dá)公園,設(shè)兩地相距千米,那么各個班的步行距離是多少?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答由于汽車速度是甲乙兩班步行速度的倍,設(shè)乙班步行份,汽車載甲班到點開始返回到點相遇,這樣得出,汽車從點返回最終與乙班同時到達(dá)點,汽車又行走了份,所以總路程分成份,所以每份千米,所以各個班的步行距離為千米.【答案】千米甲、乙、丙三個班的學(xué)生一起去郊外活動,他們租了一輛大巴,但大巴只夠一個班的學(xué)生坐,于是他們計劃先讓甲班的學(xué)生步行,乙丙兩班的學(xué)生步行,甲班學(xué)生搭乘大巴一段路后,下車步行,然后大巴車回頭去接乙班學(xué)生,并追趕上步行的甲班學(xué)生,再回頭載上丙班學(xué)生后一直駛到終點,此時甲、乙兩班也恰好趕到終點,已知學(xué)生步行的速度為5千米/小時,大巴車的行駛速度為55千米/小時,出發(fā)地到終點之間的距離為8千米,求這些學(xué)生到達(dá)終點一共所花的時間.【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答如圖所示:虛線為學(xué)生步行部分,實線為大巴車行駛路段,由于大巴車的速度是學(xué)生的11倍,所以大巴車第一次折返點到出發(fā)點的距離是乙班學(xué)生搭車前步行距離的6倍,如果將乙班學(xué)生搭車前步行距離看作是一份的話,大巴車第一次折返點到出發(fā)點的距離為6份,大巴車第一次折返到接到乙班學(xué)生又行駛了5分距離,……如此大巴車一共行駛了6+5+6+5+6=28份距離,而A到F的總距離為8份,所以大巴車共行駛了28千米,所花的總時間為28/55小時.【答案】28/55小時海淀區(qū)勞動技術(shù)學(xué)校有名學(xué)生到離學(xué)校千米的郊區(qū)參加采摘活動,學(xué)校只有一輛限乘人的中型面包車.為了讓全體學(xué)生盡快地到達(dá)目的地.決定采取步行與乘車相結(jié)合的辦法.已知學(xué)生步行的速度是每小時千米,汽車行駛的速度是每小時千米.請你設(shè)計一個方案,使全體學(xué)生都能到達(dá)目的地的最短時間是多少小時?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答由于名學(xué)生要分次乘車,分別命名為甲、乙、丙、丁四組,且汽車的速度是步行速度的倍,乙組步行份路程,則汽車載甲組行駛份,放下甲組開始返回與乙組的學(xué)生相遇,汽車載乙組追上甲組,把乙組放下再返回,甲組也步行了份,丙組、丁組步行的路程和乙組相同,如圖所示,所以全程為份,恰好是千米,其中汽車行駛了千米,共步行了千米,所以全體學(xué)生到達(dá)目的地的最短時間為(小時)【答案】小時、兩地相距千米.有一支游行隊伍從出發(fā),向勻速前進;當(dāng)游行隊伍隊尾離開時,甲、乙兩人分別從、兩地同時出發(fā).乙向步行;甲騎車先追向隊頭,追上隊頭后又立即騎向隊尾,到達(dá)隊尾后再立即追向隊頭,追上隊頭后又立即騎向隊尾……當(dāng)甲第次追上隊頭時恰與乙相遇在距地千米處;當(dāng)甲第次追上隊頭時,甲恰好第一次到達(dá)地,那么此時乙距地還有__________千米.【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答整個行程如圖所示.設(shè)甲第一次追上隊頭與第二次追上隊頭時隊伍所行的距離為千米,第一次從隊頭到隊尾時甲所行距離為千米.由于每一次甲都是從隊尾追上隊頭,再從隊頭回到隊尾,追上隊頭是一個追及過程,回到隊尾是一個相遇過程,而追及、相遇的路程都是隊伍的長度,隊伍的長度是不變的,所以每一次追及、相遇的時間也是不變的,所以每一次甲追上隊頭到下一次甲追上隊頭這段時間內(nèi)隊伍所行的路程(即圖中相鄰兩條虛線之間的距離)都是相同的,而每一次從隊頭到隊尾時甲所行的路程也都是相同的.根據(jù)題意,甲第5次追上隊頭時距地,第7次追上隊頭時恰好到達(dá)地,所以;從圖中可以看出,,所以:,解得.甲第5次追上隊頭時恰與乙相遇在距地處,甲第5次追上隊頭時共行了千米,根據(jù)時間一定,速度比等于路程之比,可得.從甲第5次追上隊頭到甲第7次追上隊頭,甲共行了千米,所以這段時間內(nèi)乙行了千米,所以此時乙距地還有(千米).【答案】千米、兩地相距千米.有一支游行隊伍從出發(fā),向勻速前進;當(dāng)游行隊伍隊尾離開時,甲、乙兩人分別從、兩地同時出發(fā).乙向步行;甲騎車先追向隊頭,追上隊頭后又立即騎向隊尾,到達(dá)隊尾后再立即追向隊頭,追上隊頭后又立即騎向隊尾……當(dāng)甲第5次追上隊頭時恰與乙相遇在距地處;當(dāng)甲第7次追上隊頭時,甲恰好第一次到達(dá)地,那么此時乙距地還有______千米.【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】填空設(shè)第一次追上隊頭與第二次追上隊頭時隊伍所行的距離為千米,從隊頭到隊尾時甲所行距離為千米.則有:,解得.所以有,,因為,所以,所以(千米)【答案】千米甲班與乙班學(xué)生同時從學(xué)校出發(fā)去公園,甲班步行的速度是每小時4千米,乙班步行的速度是每小時3千米。學(xué)校有一輛汽車,它的速度是每小時48千米,這輛汽車恰好能坐一個班的學(xué)生。為了使兩班學(xué)生在最短時間內(nèi)到達(dá)公園,那么甲班學(xué)生與乙班學(xué)生需要步行的距離之比是多少千米?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答方法一:不妨設(shè)乙班學(xué)生先步行,汽車將甲班學(xué)生送至A地后返回,在B處接到乙班學(xué)生,最后汽車與乙班學(xué)生同時到達(dá)公園,如圖::=1:12,:=1:16。乙班從C至B時,汽車從C~A~B,則兩者路程之比為1:16,不妨設(shè)CB=1,則C~A~B=16,CA=(1+16)÷2=8.5,則有CB:BA=1:7.5;類似設(shè)AD=1,分析可得AD:BA=1:5.5,綜合得CB:BA:AD=22:165:30,說明甲乙兩班步行的距離之比是15:11。方法二:如圖,假設(shè)實線代表汽車行駛的路線,虛線代表甲班和乙班行走的路線,假設(shè)乙班行駛份到達(dá)點,則汽車行駛份到達(dá)點,汽車與乙班共行駛份在點相遇,其中乙班步行了份,同時甲班步行了份,此時汽車與甲班相差份,這樣甲班還需步行份,所以甲班與乙班步行的路程比為方法三:由于汽車速度是甲班速度的倍,是乙班速度的倍,設(shè)乙班步行份,則汽車載甲班學(xué)生到點返回與乙班相遇,共行份,所以,類似的設(shè)甲班步行份,則汽車從點返回到點又與甲班同時到達(dá)點,所以,,所以,所以甲班與乙班步行的路程比為【答案】甲、乙兩班同學(xué)到42千米外的少年宮參加活動,但只有一輛汽車,且一次只能坐一個班的同學(xué),已知學(xué)生步行速度相同為千米/小時,汽車載人速度是千米/小時,空車速度是千米/小時.如果要使兩班同學(xué)同時到達(dá),且到達(dá)時間最短,那么這個最短時間是多少?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答行車路線如圖所示,設(shè)甲、乙兩班步行的路程為1,車開出后返回接乙班.由車與乙相遇的過程可知:,解得,因此,車開出千米后,放下甲班回去接乙班,甲班需步行千米,共用小時.【答案】小時甲、乙二人由地同時出發(fā)朝向地前進,、兩地之距離為千米.甲步行之速度為每小時千米,乙步行之速度為每小時千米.現(xiàn)有一輛自行車,甲騎車速度為每小時千米,乙騎車的速度為每小時千米.出發(fā)時由甲先騎車,乙步行,為了要使兩人都盡快抵達(dá)目的地,騎自行車在前面的人可以將自行車留置在途中供后面的人繼續(xù)騎.請問他們從出發(fā)到最后一人抵達(dá)目的地最少需要多少小時?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答設(shè)甲騎車至離地千米處后停車,且剩余千米改為步行,則乙步行了千米后,剩余千米改為騎車.因要求同時出發(fā)且盡速抵達(dá)目的地,故花費的時間應(yīng)該相同,因此可得:,解得.故共花費了小時.【答案】小時三個人同時前往相距30千米的甲地,已知三人行走的速度相同,都是5千米每小時;現(xiàn)在還有一輛自行車,但只能一個人騎,已知騎車的速度為10千米每小時。現(xiàn)先讓其中一人先騎車,到中途某地后放車放下,繼續(xù)前進;第二個人到達(dá)后騎上再行駛一段后有放下讓最后那人騎行,自己繼續(xù)前進,這樣三人同時到達(dá)甲地。問,三人花的時間各為多少?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答由于每人的速度相同,所以每人行走的路程相同,騎車的路程也要相同,這樣每人騎車的距離都是1/3,所以時間就是20÷5+10÷10=5小時【答案】5小時兄弟兩人騎馬進城,全程51千米。馬每時行12千米,但只能由一個人騎。哥哥每時步行5千米,弟弟每時步行4千米。兩人輪換騎馬和步行,騎馬者走過一段距離就下鞍拴馬(下鞍拴馬的時間忽略不計),然后獨自步行。而步行者到達(dá)此地,再上馬前進。若他們早晨6點動身,則何時能同時到達(dá)城里?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答設(shè)哥哥步行了x千米,則騎馬行了(51-x)千米。而弟弟正好相反,步行了(51-x)千米,騎馬行x千米。由哥哥騎馬與步行所用的時間之和與弟弟相等,可列出方程,解得x=30,所以兩人用的時間同為(小時),早晨6點動身,下午1點45分到達(dá)。【答案】1點45分、兩人同時自甲地出發(fā)去乙地,、步行的速度分別為米/分、米/分,兩人騎車的速度都是米/分,先騎車到途中某地下車把車放下,立即步行前進;走到車處,立即騎車前進,當(dāng)超過一段路程后,把車放下,立即步行前進,兩人如此繼續(xù)交替用車,最后兩人同時到達(dá)乙地,那么從甲地到乙地的平均速度是米/分.【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答在整個行程中,車是從甲地到乙地,恰好過了一個全程,所以、兩人步行的路程合起來也恰好是一個全程.而步行的路程加上騎車的路程也是一個全程,所以步行的路程等于騎車的路程,騎車的路程等于步行的路程.設(shè)步行米,騎車米,那么步行米,騎車米.由于兩人同時到達(dá),故所用時間相同,得:,可得.不妨設(shè)步行了200米,那么騎車的路程為300米,所以從甲地到乙地的平均速度是(米/分).【答案】A、B兩地相距30千米,甲乙丙三人同時從A到B,而且要求同時到達(dá)?,F(xiàn)在有兩輛自行車,但不許帶人,但可以將自行車放在中途某處,后來的人可以接著騎。已知騎自行車的平均速度為每小時20千米,甲步行的速度是每小時5千米,乙和丙每小時4千米,那么三人需要多少小時可以同時到達(dá)?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答因為乙丙步行速度相等,所以他們兩人步行路程和騎車路程應(yīng)該是相等的。對于甲因為他步行速度快一些,所以騎車路程少一點,步行路程多一些?,F(xiàn)在考慮甲和乙丙步行路程的距離。甲多步行1千米要用小時,乙多騎車1千米用小時,甲多用小時。甲步行1千米比乙少用小時,所以甲比乙多步行的路程是乙步行路程的:.這樣設(shè)乙丙步行路程為3份,甲步行4份。如下圖安排:這樣甲騎車行騎車的,步行.所以時間為:小時?!敬鸢浮啃r設(shè)有甲、乙、丙三人,他們步行的速度相同,騎車的速度也相同,騎車的速度是步行速度的倍.現(xiàn)甲從地去地,乙、丙從地去地,雙方同時出發(fā).出發(fā)時,甲、乙為步行,丙騎車.途中,當(dāng)甲、丙相遇時,丙將車給甲騎,自己改為步行,三人仍按各自原有方向繼續(xù)前進;當(dāng)甲、乙相遇時,甲將車給乙騎,自己重又步行,三人仍按各自原有方向繼續(xù)前進.問:三人之中誰最先達(dá)到自己的目的地?誰最后到達(dá)目的地?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答由于每人的步行速度和騎車速度都相同,所以,要知道誰先到、誰后到,只要計算一下各人誰騎行最長,誰騎行最短.將整個路程分成份,甲、丙最先相遇,丙騎行份;甲先步行了份,然后騎車與乙相遇,騎行份;乙步行份,騎行份,可知,丙騎行的最長,甲騎行的最短,所以,丙最先到,甲最后到.【答案】丙最先到,甲最后到一個旅游者于是10時15分從旅游基地乘小艇出發(fā),務(wù)必在不遲于當(dāng)日13時返回。已知河水速度為/小時,小艇在靜水中的速度為3千米/小時,如果旅游者每過30分鐘就休息15分鐘,不靠岸,只能在某次休息后才返回,那么他從旅游基地出發(fā)乘艇走過的最大距離是____千米。【考點】行程問題之接送問題 【難度】☆☆☆☆ 【題型】填空先逆水行30分,行(3-1.4)*30/60=。休息15分。艇退1.4*15/60=。再逆水行30分,行(3-1.4)*30/60=。休息15分。艇退1.4*15/60=。艇距基地(0.8-0.35)*3=。1.35/(3+1.4)=0.31小時=19分。共用時:(30+15)*3+19=154分。是12時49分。共行路程:(0.8+0.35)*3+(0.8-0.35)*3=0.8*6=。在一個沙漠地帶,汽車每天行駛200千米,每輛汽車載運可行駛24天的汽油.現(xiàn)有甲、乙兩輛汽車同時從某地出發(fā),并在完成任務(wù)后,沿原路返回.為了讓甲車盡可能開出更遠(yuǎn)的距離,乙車在行駛一段路程后,僅留下自己返回出發(fā)地的汽油,將其他的油給甲車.求甲車所能開行的最遠(yuǎn)距離.【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答3200【答案】某沙漠通訊班接到緊急命令,讓他們火速將一份情報送過沙漠?,F(xiàn)在已知沙漠通訊班成員只有靠步行穿過沙漠,每個人步行穿過沙漠的時間均為12天,而每個人最多只能帶8天的食物,請問,在假定每個人飯量大小相同,且所能帶的食物相同的情況下,沙漠通訊班能否完成任務(wù)?如果能,那么最少需要幾人才能將情報送過沙漠,怎么送?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】填空能,最少需要3人。送法如下:3人同時出發(fā),同吃第一個人的食物,共同走2天后,第一人只剩2天的食物,正好夠他返回時吃;第二人和第三人再共同前進2天,吃第二人的食物,這樣第二人只剩4天的食物,又正好夠他返回時吃這樣,第三人還有8天的路程,正好他還有8天的食物,因此便可以突起沙漠,完成送情報的任務(wù)?!敬鸢浮磕?,最少需要3人科學(xué)考察隊的一輛越野車需要穿越一片全程大于千米的沙漠,但這輛車每次裝滿汽油最多只能駛千米,隊長想出一個方法,在沙漠中設(shè)一個儲油點,越野車裝滿油從起點出發(fā),到儲油點時從車中取出部分油放進儲油點,然后返回出發(fā)點,加滿油后再開往,到儲油點時取出儲存的油放在車上,從出發(fā)點到達(dá)終點.用隊長想出的方法,越野車不用其他車幫助就完成了任務(wù),那么,這輛越野車穿越這片沙漠的最大行程是千米.【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答汽車從起點行駛到點時,首先要消耗掉往返間路程的油,留下的油要保證再次到點時油箱還是滿的,所以這輛越野車穿越這片沙漠的最大行程是(千米)【答案】千米有一只小猴子在深山中發(fā)現(xiàn)了一片野香蕉園,它一共摘了根香蕉,然后要走米才能到家,如果它每次最多只能背根香蕉,并且它每走米就要吃掉一根香蕉,那么,它最多可以把根香蕉帶回家?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答首先,猴子背著100根香蕉直接回家,會怎樣?在到家的時候,猴子剛好吃完最后一根香蕉,其他200根香蕉白白浪費了!折返,求最值問題,我們需要設(shè)計出一個最優(yōu)方案..猴子必然要折返3次來拿香蕉.我們?yōu)楹镒酉氲揭粋€絕妙的主意:在半路上儲存一部分香蕉.猴子的路線:這兩個儲存點與就是猴子放置香蕉的地方,怎么選呢?最好的情況是:(一)當(dāng)猴子第①③④次回去時,都能在這里拿到足夠到野香蕉園的香蕉.(二)當(dāng)猴子第②④次到達(dá)儲存點時,都能將之前路上消耗的香蕉補充好(即身上還有100個)(三)點同上.的距離為,路上消耗個香蕉.的距離為,路上消耗個香蕉.猴子第一次到達(dá)點,還有個香蕉,回去又要消耗個,只能留下個香蕉.這個香蕉將為猴子補充②③④次路過時的消耗和需求,每次都是個,則.米,猴子將在留下60個香蕉.那么當(dāng)猴子②次到達(dá)時,身上又有了100個香蕉,到⑤時還有個,從⑤回③需要個,可在留下個,用于⑥時補充從④到⑥的消耗個.則:.至此,猴子到家時所剩的香蕉為:.因為猴子每走10米才吃一個香蕉,走到家時最后一個10米才走了,所以還沒有吃香蕉,應(yīng)該還剩下54個香蕉.方法二:小猴子背根香蕉最多走米,那么根香蕉需要有分三次背,就應(yīng)有兩個存儲點如上圖所示,所以還剩下的香蕉為因為猴子每走10米才吃一個香蕉,走到家時最后一個10米才走了,所以還沒有吃香蕉,應(yīng)該還剩下54個香蕉.【答案】54個香蕉有5位探險家計劃橫穿沙漠.他們每人駕駛一輛吉普車,每輛車最多能攜帶可供一輛車行駛312千米的汽油.顯然,5個人不可能共同穿越500千米以上的沙漠.于是,他們計劃在保證其余車完全返回出發(fā)點的前提下,讓一輛車穿越沙漠,當(dāng)然實現(xiàn)這一計劃需要幾輛車相互借用汽油.問:穿越沙漠的那輛車最多能穿越多寬的沙漠?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答首先得給這5輛吉普車設(shè)計一套行駛方案,而這個方案的核心就在于:其中的4輛車只是燃料供給車,它們的作用就是在保證自己能夠返回的前提下,為第5輛車提供足夠的燃料.如圖所示,5輛車一起從A點出發(fā),設(shè)第1輛車到B點時留下足夠自己返回A點的汽油,剩下的汽油全部轉(zhuǎn)給其余4輛車.注意,B點的最佳選擇應(yīng)該滿足剛好使這4輛車全部加滿汽油.剩下的4輛車?yán)^續(xù)前進,到C點時第2輛車留下夠自己返回A點的汽油,剩下的汽油全部轉(zhuǎn)給其余3輛車,使它們剛好加滿汽油.剩下的3輛車?yán)^續(xù)前進……到E點時,第4輛車留下返回A點的汽油,剩下的汽油轉(zhuǎn)給第5輛車.此時,第5輛車是加滿汽油的,還能向前行駛312千米.以這種方式,第5輛車能走多遠(yuǎn)呢?我們來算算.5輛車到達(dá)B點時,第1輛車要把另外4輛車消耗掉的汽油補上,加上自己往返A(chǔ)B的汽油,所以應(yīng)把行駛312千米的汽油分成6份,2份自己往返A(chǔ)B,4份給另外4輛車每輛加1份,剛好使這4輛車都加滿汽油.因此AB的長為:(千米).接下來,就把5輛車的問題轉(zhuǎn)化為4輛車的問題.4輛車從B點繼續(xù)前進,到達(dá)C點時,4輛車共消耗掉4份汽油,再加上第2輛車從C經(jīng)B返回A,所以第2輛車仍然要把汽油分成6等份,3份供自己從B到C,再從C返回A,3份給另外3輛車加滿汽油,由此知BC長也是52千米.同樣的道理,(千米).所以第5輛車最遠(yuǎn)能行駛:(千米).【答案】千米課堂檢測課堂檢測、兩地相距120千米,已知人的步行速度是每小時5千米,摩托車的行駛速度是每小時50千米,摩托車后座可帶一人.問:有三人并配備一輛摩托車從地到地最少需要多少小時?(保留—位小數(shù))【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答本題實際上是一個接送問題,要想使所用的時間最少,三人應(yīng)同時到達(dá).假設(shè)這三人分別為甲、乙、丙.由于摩托車只可同時帶兩個人,所以可安排甲一直騎摩托車,甲先帶乙到某一處,丙則先步行,甲將乙?guī)У胶笤僬刍厝ソ颖?,乙開始步行,最后三人同時到達(dá).要想同時到達(dá),則乙與丙步行的路程和乘車的路程都應(yīng)相等.如下圖所示.由于丙從從走到的時間內(nèi)甲從到再回到,相同的時間內(nèi)二者所行的路程之比等于速度的比,而兩者的速度比為,所以,全程,所以從地到地所用的時間為:(小時).【答案】小時甲、乙兩班學(xué)生到離校24千米的飛機場參觀,但只有一輛汽車,一次只能乘坐一個班的學(xué)生.為了盡快到達(dá)飛機場,兩個班商定,由甲班先坐車,乙班先步行,同時出發(fā),甲班學(xué)生在途中某地下車后步行去飛機場,汽車則從某地立即返回接在途中步行的乙班學(xué)生.如果甲、乙兩班學(xué)生步行速度相同,汽車速度是他們步行速度的7倍,那么汽車應(yīng)在距飛機場多少千米處返回接乙班學(xué)生,才能使兩班同時到達(dá)飛機場?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答設(shè)學(xué)生步行時速度為“1”,那么汽車的速度為“7”,有如下示意圖.我們讓甲班先乘車,那么當(dāng)乙班步行至距學(xué)校l處,甲班已乘車至距學(xué)校7l處.此時甲班下車步行,汽車往回行駛接乙班,汽車、乙班將相遇.汽車、乙班的距離為7l-l=6l,兩者的速度和為7+1=8,所需時間為6l÷8=,這段時間乙班學(xué)生又步行的路程,所以乙班學(xué)生共步行l(wèi)+=后乘車而行.應(yīng)要求甲、乙班同時出發(fā)、同時到達(dá),且甲、乙兩班步行的速度相等,所以甲班也應(yīng)在步行路程后達(dá)到飛機場,有甲班經(jīng)過的全程為7l+=8.75l,應(yīng)為全程.所以有7l=24÷×7=,即在距學(xué)校的地方甲班學(xué)生下車步行,此地距飛機場24-19.2=.即汽車應(yīng)在距飛機場的地方返回接乙班學(xué)生,才能使兩班同時到達(dá)飛機場.【答案】某學(xué)校學(xué)生計劃乘坐旅行社的大巴前往郊外游玩,按照計劃,旅行社的大巴準(zhǔn)時從車站出發(fā)后能在約定時間到達(dá)學(xué)校,搭載滿學(xué)生在預(yù)定時間到達(dá)目的地,已知學(xué)校的位置在車站和目的地之間,大巴車空載的時候的速度為千米/小時,滿載的時候速度為千米/小時,由于某種原因大巴車晚出發(fā)了分鐘,學(xué)生在約定時間沒有等到大巴車的情況下,步行前往目的地,在途中搭載上趕上來的大巴車,最后比預(yù)定時間晚了分鐘到達(dá)目的地,求學(xué)生們的步行速度.【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答大巴車空載的路程每多千米,滿載的路程就會少千米,全程所花的時間就會少小時分鐘,現(xiàn)在大巴車比原計劃全程所花時間少了分鐘,所以,所以大巴車空載的路程比原計劃多了千米,也就是說,大巴車抵達(dá)學(xué)校后又行駛了千米才接到學(xué)生,此時學(xué)生們已經(jīng)出發(fā)了分鐘即小時,所以學(xué)生們的步行速度為千米/小時.【答案】千米/小時甲、乙兩人要到沙漠中探險,他們每天向沙漠深處走20千米,已知每人最多可攜帶一個人24天的食物和水.⑴如果不準(zhǔn)將部分食物存放在途中,問其中一人最遠(yuǎn)可以深人沙漠多少千米(當(dāng)然要求二人最后返回出發(fā)點)?⑵如果可以將部分食物存放于途中以備返回時取用,情況又怎樣呢?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答⑴怎么才能讓其中一人走得最遠(yuǎn)呢?只能是另一人在某個地方將自己的部分食物和水(注意必須留足自己返回所需)補給第一個人,讓他仍然有24天的食物和水,這樣才能走得最遠(yuǎn).如圖所示,不妨設(shè)甲從A點出發(fā),走了x天后到達(dá)B點處返回,甲在B點處留足返回時所需x天食物和水后,將其余食物與水全部給乙補足為24天.此時相當(dāng)于甲的24天的食物和水供甲走2個x天和乙走1個x天,故有(天).所以甲應(yīng)在第8天從B點處返回A.因為乙在B點已經(jīng)消耗了8天的食物和水,但同時在B點甲又給乙補充了8天的食物和水,所以此時乙身上仍然攜帶有24天的食物和水.由于乙也要返回,所以乙最多只能往前走(天)的路程到達(dá)C處,就必須返回.所以其中的一人最遠(yuǎn)只能深入沙漠(千米).(2)如果允許存放部分食物和水于途中,則同上面分析類似,甲走了y天后不僅要補足乙的食物和水,還要存足y天的供乙返回時消耗的食物和水.即甲的24天的食物和水供甲、乙各走2個y天,所以(天).此時的乙不僅補足了24天的食物和水,而且甲還給他預(yù)留了返回的食物和水.所以乙就可以帶著身上24天的食物和水繼續(xù)往沙漠深處走12天后再返回,取得甲事先存放的食物和水后,然后再返回出發(fā)地.因此,乙共可深入沙漠(千米).【答案】千米家庭作業(yè)作業(yè)家庭作業(yè)作業(yè)檢測李經(jīng)理的司機每天早上7點30分到達(dá)李經(jīng)理家接他去公司。有一天李經(jīng)理7點從家里出發(fā)去公司,路上遇到從公司按時來接他的車,再乘車去公司,結(jié)果比平常早到5分鐘。則李經(jīng)理乘車的速度是步行速度的倍。(假設(shè)車速、步行速度保持不變,汽車掉頭與上下車時間忽略不計)【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】填空因為司機是按時的所以,汽車比平時早到5分鐘,實際上是因為少走了兩個李經(jīng)理步行的距離,所以司機接到李經(jīng)理時,實際上在過2.5分鐘就能到李經(jīng)理家了,時間為7點27分30秒.而李經(jīng)理步行了27分30秒,汽車2.5分鐘行駛的路程,李經(jīng)理走了27.5分.所以汽車速度是人的11倍.【答案】11倍甲、乙兩班學(xué)生到離校39千米的博物館參觀,但只有一輛汽車,一次只能乘坐一個班的學(xué)生.為了盡快到達(dá)博物館,兩個班商定,由甲班先坐車,乙班先步行,同時出發(fā),甲班學(xué)生在途中某地下車后步行去博物館,汽車則從某地立即返回去接在途中步行的乙班學(xué)生.如果甲、乙兩班學(xué)生步行速度相同,汽車速度是他們步行速度的10倍,那么汽車應(yīng)在距博物館多少千米處返回接乙班學(xué)生,才能使兩班同時到達(dá)博物館?【考點】行程問題之接送問題 【難度】☆☆☆ 【題型】解答如圖所示,當(dāng)甲班乘車至處后下車,然后步行至博物館,車則返回去接乙班,至處時恰好與乙班相遇,然后載著乙班直接到博物館.由于甲、乙兩班學(xué)生要同時到達(dá),他們所用的時間是相同的,而總路程也相同,那么他們乘車的路程和步行的路程也分別相同,也就是說圖中與相等.又乙班走完時,汽車行駛了從到再從到這一段路程,由于汽車速度是他們步行速度的10倍,所以汽車走的這段路程是的10倍,可得是的倍,那么全程是的倍,也是的倍,所以為千米,即汽車應(yīng)在距博物館6千米處返回接乙班.【答案】6千米甲乙兩人同時從學(xué)校出發(fā)去距離33千米外的公園,甲步行的速度是每小時4千米,乙步行的速度是每小時3千米。他們有一輛自行車,它的速度是每小時5千米,這輛車只能載一個人,所以先讓其中一人先騎

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論