版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
完全平方公式教學(xué)設(shè)計(jì)【8篇】完全平方公式教學(xué)設(shè)計(jì)篇1
學(xué)習(xí)了乘法公式中的完全平方,一個(gè)是兩數(shù)和的平方,另一個(gè)是兩數(shù)差的平方,兩者僅一個(gè)“符號(hào)”不同。相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個(gè)“符號(hào)”不同,運(yùn)用完全平方公式計(jì)算時(shí),要注意:
(1)切勿把此公式與平方差公式混淆,而隨意寫(xiě)。
(2)切勿把“乘積項(xiàng)”2ab中的2丟掉。
(3)計(jì)算時(shí),要先觀察題目是否符合公式的條件。若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進(jìn)行計(jì)算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運(yùn)用乘法法則進(jìn)行計(jì)算。
今后在教學(xué)中,要注意以下幾點(diǎn):
1、讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計(jì)算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征。
2、引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力。
完全平方公式教學(xué)設(shè)計(jì)篇2
一、教材分析
完全平方公式是初中代數(shù)的一個(gè)重要組成部分,是學(xué)生在已經(jīng)掌握單項(xiàng)式乘法、多項(xiàng)式乘法及平方差公式基礎(chǔ)上的拓展,對(duì)以后學(xué)習(xí)因式分解、解一元二次方程、配方法、勾股定理及圖形面積計(jì)算都有舉足輕重的作用。
本節(jié)課是繼乘法公式的內(nèi)容的一種升華,起著承上啟下的作用。在內(nèi)容上是由多項(xiàng)式乘多項(xiàng)式而得到的,同時(shí)又為下一節(jié)課打下了基礎(chǔ),環(huán)環(huán)相扣,層層遞進(jìn)。通過(guò)這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會(huì)到從簡(jiǎn)單到復(fù)雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。
二、學(xué)情分析
多數(shù)學(xué)生的抽象思維能力、邏輯思維能力、數(shù)學(xué)化能力有限,理解完全平方公式的幾何解釋、推導(dǎo)過(guò)程、結(jié)構(gòu)特點(diǎn)有一定困難。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動(dòng)手操作,突出完全平方公式的探索過(guò)程,自主探索出完全平方公式的基本形式,并用語(yǔ)言表述其結(jié)構(gòu)特征,進(jìn)一步發(fā)展學(xué)生的合情推理能力、合作交流能力和數(shù)學(xué)化能力。
三、教學(xué)目標(biāo)
知識(shí)與技能
利用添括號(hào)法則靈活應(yīng)用乘法公式。
過(guò)程與方法
利用去括號(hào)法則得到添括號(hào)法則,培養(yǎng)學(xué)生的逆向思維能力。
情感態(tài)度與價(jià)值觀
鼓勵(lì)學(xué)生算法多樣化,培養(yǎng)學(xué)生多方位思考問(wèn)題的習(xí)慣,提高學(xué)生的合作交流意識(shí)和創(chuàng)新精神。
四、教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn)
理解添括號(hào)法則,進(jìn)一步熟悉乘法公式的合理利用.
教學(xué)難點(diǎn)
在多項(xiàng)式與多項(xiàng)式的乘法中適當(dāng)添括號(hào)達(dá)到應(yīng)用公式的目的.
五、教學(xué)方法
思考分析、歸納總結(jié)、練習(xí)、應(yīng)用拓展等環(huán)節(jié)。
六、教學(xué)過(guò)程設(shè)計(jì)
師生活動(dòng)
設(shè)計(jì)意圖
一.提出問(wèn)題,創(chuàng)設(shè)情境
請(qǐng)同學(xué)們完成下列運(yùn)算并回憶去括號(hào)法則.
(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括號(hào)法則:
去括號(hào)時(shí),如果括號(hào)前是正號(hào),去掉括號(hào)后,括號(hào)里的每一項(xiàng)都不改變符合;如果括號(hào)前是負(fù)號(hào),去掉括號(hào)后,括號(hào)里的各項(xiàng)都改變符合.
也就是說(shuō),遇“加”不變,遇“減”都變.
二、探究新知
把上述四個(gè)等式的左右兩邊反過(guò)來(lái),又會(huì)得到什么結(jié)果呢?
(1)4+5+2=4+(5+2)(2)4-5-2=4-(5+2)
(3)a+b+c=a+(b+c)(4)a-b+c=a-(b-c)
左邊沒(méi)括號(hào),右邊有括號(hào),也就是添了括號(hào),同學(xué)們可不可以總結(jié)出添括號(hào)法則來(lái)呢?
(學(xué)生分組討論,最后總結(jié))
添括號(hào)法則是:
添括號(hào)時(shí),如果括號(hào)前面是正號(hào),括到括號(hào)里的.各項(xiàng)都不變符號(hào);如果括號(hào)前面是負(fù)號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào).
也是:遇“加”不變,遇“減”都變.
請(qǐng)同學(xué)們利用添括號(hào)法則完成下列練習(xí):
1.在等號(hào)右邊的括號(hào)內(nèi)填上適當(dāng)?shù)捻?xiàng):
(1)a+b-c=a+()(2)a-b+c=a-()
(3)a-b-c=a-()(4)a+b+c=a-()
判斷下列運(yùn)算是否正確.
(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)
總結(jié):添括號(hào)法則是去括號(hào)法則反過(guò)來(lái)得到的,無(wú)論是添括號(hào),還是去括號(hào),運(yùn)算前后代數(shù)式的值都保持不變,所以我們可以用去括號(hào)法則驗(yàn)證所添括號(hào)后的代數(shù)式是否正確.
三、新知運(yùn)用
有些整式相乘需要先作適當(dāng)?shù)淖冃危缓笤儆霉?,這就需要同學(xué)們理解乘法公式的結(jié)構(gòu)特征和真正內(nèi)涵.請(qǐng)同學(xué)們分組討論,完成下列計(jì)算.
例:運(yùn)用乘法公式計(jì)算
(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2
(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)
四.隨堂練習(xí):
1.課本P111練習(xí)
2.《學(xué)案》101頁(yè)——鞏固訓(xùn)練
五、課堂小結(jié):
通過(guò)本節(jié)課的學(xué)習(xí),你有何收獲和體會(huì)?
我們學(xué)會(huì)了去括號(hào)法則和添括號(hào)法則,利用添括號(hào)法則可以將整式變形,從而靈活利用乘法公式進(jìn)行計(jì)算.
我體會(huì)到了轉(zhuǎn)化思想的重要作用,學(xué)數(shù)學(xué)其實(shí)是不斷地利用轉(zhuǎn)化得到新知識(shí),比如由繁到簡(jiǎn)的轉(zhuǎn)化,由難到易的轉(zhuǎn)化,由已知解決未知的轉(zhuǎn)化等等.
六、檢測(cè)作業(yè)
習(xí)題:必做題:3、4、5題
選做題:7題
知識(shí)梳理,教學(xué)導(dǎo)入,激發(fā)學(xué)生的學(xué)習(xí)熱情
交流合作,探究新知,以問(wèn)題驅(qū)動(dòng),層層深入。
歸納總結(jié),提升課堂效果。
作業(yè)檢測(cè),檢測(cè)目標(biāo)的達(dá)成情況。
完全平方公式教學(xué)設(shè)計(jì)篇3
一、教材分析
本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位:《完全平方公式》是人教版數(shù)學(xué)八年級(jí)上冊(cè)第十四章的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了多項(xiàng)式的乘法,這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)課通過(guò)學(xué)生合作學(xué)習(xí),利用多項(xiàng)式相乘法則和圖形解釋而得到完全平方公式,進(jìn)而理解和運(yùn)用完全平方公式,對(duì)以后學(xué)習(xí)因式分解,解一元二次方程都具有舉足輕重的作用。
作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想。
二、學(xué)情分析
學(xué)生剛學(xué)過(guò)多項(xiàng)式的乘法,已具備學(xué)習(xí)和運(yùn)用完全平方公式的知識(shí)結(jié)構(gòu),但是由于學(xué)生初步學(xué)習(xí)乘法公式,認(rèn)清公式結(jié)構(gòu)并不容易,因此教學(xué)時(shí)要循序漸進(jìn)。
三、教學(xué)目標(biāo)
知識(shí)與技能
1.完全平方公式的推導(dǎo)及其應(yīng)用。
2.完全平方公式的幾何證明。
過(guò)程與方法
經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推理能力。
情感態(tài)度與價(jià)值觀
對(duì)學(xué)生觀察能力、概括能力、語(yǔ)言表述能力的培養(yǎng),以及數(shù)學(xué)思想的滲透。
四、教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn)
完全平方公式的`推導(dǎo)過(guò)程;結(jié)構(gòu)特點(diǎn)與公式的應(yīng)用。
教學(xué)難點(diǎn)
完全平方公式結(jié)構(gòu)特點(diǎn)及其應(yīng)用。
五、教法學(xué)法
多媒體輔助教學(xué),將知識(shí)形象化、生動(dòng)化,激發(fā)學(xué)生的興趣。教學(xué)中逐步設(shè)置疑問(wèn),引導(dǎo)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口,積極參與知識(shí)全過(guò)程。
六、教學(xué)過(guò)程設(shè)計(jì)
師生活動(dòng)
設(shè)計(jì)意圖
一.復(fù)習(xí)多項(xiàng)式與多項(xiàng)式的乘法法則
1、多項(xiàng)式與多項(xiàng)式的乘法法則內(nèi)容。
2、多項(xiàng)式與多項(xiàng)式的乘法練習(xí)。
二.講授新課
完全平方公式的推導(dǎo)
1、利用多項(xiàng)式與多項(xiàng)式的乘法法則和幾何法推導(dǎo)完全平方(和)公式
附:有簡(jiǎn)單的填空練習(xí)
2、利用多項(xiàng)式乘法則和換元法推導(dǎo)完全平方(差)公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
二、總結(jié)完全平方公式的特點(diǎn)
介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。
三、課堂練習(xí)
1、改錯(cuò)練習(xí)
2、例題講解(總結(jié)利用完全平方公式計(jì)算的步驟)
第一步選擇公式,明確是哪兩項(xiàng)和(或差)的平方;
第二步準(zhǔn)確代入公式;
第三步化簡(jiǎn)。
計(jì)算練習(xí)
(1)課本110頁(yè)第一題
(2)(x-6)2(y-5)2
四、課堂小結(jié):
1、應(yīng)用完全平方公式應(yīng)注意什么?
在解題過(guò)程中要準(zhǔn)確確定a和b,對(duì)照公式原形的兩邊,做到不丟項(xiàng)、不弄錯(cuò)符號(hào)、2ab時(shí)不能少乘以2。
2、助記口訣
復(fù)習(xí)多項(xiàng)式與多項(xiàng)式的乘法法則為新課的學(xué)習(xí)做準(zhǔn)備。
利用不同的的方法來(lái)推導(dǎo)完全平方公式,讓學(xué)生認(rèn)知數(shù)學(xué)中的不同解題方法。
利用助記口訣幫助學(xué)生更加準(zhǔn)確的掌握完全平方公式的特點(diǎn)。
通過(guò)課堂練習(xí),使學(xué)生掌握用完全平方公式計(jì)算的步驟,加強(qiáng)學(xué)生解題的準(zhǔn)確率。
強(qiáng)調(diào)應(yīng)用完全平方公式解題的注意點(diǎn)和助記口訣,提高學(xué)生解決問(wèn)題的能力和解題的準(zhǔn)確率。
完全平方公式教學(xué)設(shè)計(jì)篇4
一、教學(xué)內(nèi)容:
本節(jié)內(nèi)容是人教版教材八年級(jí)上冊(cè),第十四章第2節(jié)乘法公式的第二課時(shí)――完全平方公式。
二、教材分析:
完全平方公式是乘法公式的重要組成部分,也是乘法運(yùn)算知識(shí)的升華,它是在學(xué)生學(xué)習(xí)整式乘法后,對(duì)多項(xiàng)式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運(yùn)算的必備知識(shí),它還是配方法的基本模式,為以后學(xué)習(xí)一元二次方程、函數(shù)等知識(shí)奠定了基礎(chǔ),所以說(shuō)完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。
本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗(yàn)證為學(xué)生體驗(yàn)規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。完全平方公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些代數(shù)式的運(yùn)算,培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。
重點(diǎn):掌握完全平方公式,會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
難點(diǎn):理解公式中的字母含義,即對(duì)公式中字母a、b的理解與正確應(yīng)用。
三、教學(xué)目標(biāo)
(1)經(jīng)歷探索完全平方公式的推導(dǎo)過(guò)程,掌握完全平方公式,并能正確運(yùn)用公式進(jìn)行簡(jiǎn)單計(jì)算。
(2)進(jìn)一步發(fā)展學(xué)生的符號(hào)感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會(huì)獨(dú)立思考。
(3)通過(guò)推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會(huì)與他人合作交流,體驗(yàn)解決問(wèn)題的多樣性。
(4)體驗(yàn)完全平方公式可以簡(jiǎn)化運(yùn)算從而激發(fā)學(xué)生的學(xué)習(xí)興趣;在自主探究、合作交流的學(xué)習(xí)過(guò)程中獲得體驗(yàn)成功的喜悅,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。
四、學(xué)情分析與教法學(xué)法
學(xué)情分析:課程標(biāo)準(zhǔn)提出數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習(xí)中,學(xué)生已經(jīng)掌握了整式的乘法運(yùn)算及平方差公式的基礎(chǔ)上開(kāi)展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強(qiáng)的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,本節(jié)內(nèi)容才較易掌握。但八年級(jí)學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問(wèn)題。
學(xué)法:以自主探究為主要學(xué)習(xí)方式,使學(xué)生在獨(dú)立思考、歸納總結(jié)、合作交流
總結(jié)反思中獲得數(shù)學(xué)知識(shí)與技能。
教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過(guò)程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動(dòng)探究的學(xué)習(xí)狀態(tài)。
五、教學(xué)過(guò)程(略)
六、教學(xué)評(píng)價(jià)
在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評(píng)價(jià)學(xué)生在知識(shí)技能、數(shù)學(xué)思考、問(wèn)題解決和情感態(tài)度等方面的表現(xiàn)。教師通過(guò)情境引入、提供問(wèn)題引導(dǎo)學(xué)生從已有的知識(shí)為出發(fā)點(diǎn),自主探究,發(fā)現(xiàn)問(wèn)題,深入思考。學(xué)生解決問(wèn)題要以獨(dú)立思考為主,當(dāng)遇到困難時(shí)學(xué)會(huì)求助交流,教師也要給學(xué)生思考交流的時(shí)間,讓學(xué)生經(jīng)歷得出結(jié)論的過(guò)程,培養(yǎng)發(fā)現(xiàn)問(wèn)題解決問(wèn)題的能力。
在整個(gè)學(xué)習(xí)過(guò)程中,通過(guò)對(duì)學(xué)生參與自主探究的程度、合作交流的意識(shí)以及獨(dú)立思考的習(xí)慣,發(fā)現(xiàn)問(wèn)題的能力進(jìn)行評(píng)價(jià),并對(duì)學(xué)生的想法或結(jié)論給予鼓勵(lì)評(píng)價(jià)。
完全平方公式教學(xué)設(shè)計(jì)篇5
運(yùn)用完全平方公式計(jì)算:
(1)(2)(3)
(4)(5)(6)
(7)(8)(9)
(l0)
學(xué)生活動(dòng):學(xué)生在練習(xí)本上完成,然后同學(xué)互評(píng),教師抽看結(jié)果,練習(xí)中存在的共性問(wèn)題要集中解決.
5.變式訓(xùn)練,培養(yǎng)能力
完全平方公式教學(xué)設(shè)計(jì)篇6
教材分析
1本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過(guò)學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問(wèn)題,對(duì)可能的答案做出假設(shè)與猜想,并通過(guò)多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
學(xué)情分析
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
①同類項(xiàng)的定義。
②合并同類項(xiàng)法則
③多項(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
教學(xué)目標(biāo)
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理
數(shù)、實(shí)數(shù)、代數(shù)式、、;掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、、不等式、函數(shù)等進(jìn)行描述。
(四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。
(五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見(jiàn)解;能從交流中獲益。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡(jiǎn)單的計(jì)算。
難點(diǎn):會(huì)推導(dǎo)完全平方公式
教學(xué)過(guò)程
教學(xué)過(guò)程設(shè)計(jì)如下:
〈一〉、提出問(wèn)題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過(guò)運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?
(2m+3n)2=,(-2m-3n)2=,
(2m-3n)2=,(-2m+3n)2=。
〈二〉、分析問(wèn)題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特點(diǎn)。
(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。
(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
2、[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運(yùn)用公式,解決問(wèn)題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=,(m-n)2=,
(-m+n)2=,(-m-n)2=,
(a+3)2=,(-c+5)2=,
(-7-a)2=,()2=.
2、判斷:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+)2=25a2+5ab+
()⑤(5a-)2=5a2-5ab+
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、一現(xiàn)身手
①(x+y)2=;②(-y-x)2=;
③(2x+3)2=;④(3a-2)2=;
⑤(2x+3y)2=;⑥(4x-5y)2=;
⑦(+n)2=;⑧()2=.
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過(guò)程中,需要注意那些問(wèn)題?
(1)公式右邊共有3項(xiàng)。
(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
〈五〉、探險(xiǎn)之旅
(1)(-3a+2b)2=
(2)(-7-2m)2=
(3)(-+2n)2=
(4)(3/5a-1/2b)2=
(5)(mn+3)2=
(6)()2=
(7)(2xy2-3x2y)2=
(8)(2n3-3m3)2=
板書(shū)設(shè)計(jì)
完全平方公式
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2
完全平方公式教學(xué)設(shè)計(jì)篇7
教學(xué)目標(biāo)
理解兩個(gè)完全平方公式的結(jié)構(gòu),靈活運(yùn)用完全平方公式進(jìn)行運(yùn)算。
在運(yùn)用完全平方公式的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的符號(hào)演算的能力,提高運(yùn)算能力。
培養(yǎng)學(xué)生在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,敢于發(fā)表自己的見(jiàn)解。
重點(diǎn)難點(diǎn)
重點(diǎn)
完全平方公式的比較和運(yùn)用
難點(diǎn)
完全平方公式的結(jié)構(gòu)特點(diǎn)和靈活運(yùn)用。
教學(xué)過(guò)程
一、復(fù)習(xí)導(dǎo)入
1.說(shuō)出完全平方公式的內(nèi)容及作用。
2.計(jì)算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?
學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計(jì)算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計(jì)算,結(jié)果是一樣的。
教師歸納:當(dāng)我們對(duì)差與和加以區(qū)分時(shí),兩個(gè)公式是有區(qū)別的.,區(qū)別是其結(jié)果的中間項(xiàng)一個(gè)是“減”一個(gè)是“加”,注意到區(qū)別有助于計(jì)算的準(zhǔn)確;另一方面,當(dāng)我們對(duì)差與和不加區(qū)分,全部理解成“加項(xiàng)”時(shí),那么兩個(gè)公式從結(jié)構(gòu)上來(lái)看就是一致的了,其結(jié)構(gòu)都是“兩項(xiàng)和的平方,等于它們的平方和,加上它們的積的兩倍?!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點(diǎn),提高運(yùn)算的靈活性。
我們學(xué)習(xí)運(yùn)算,除了要重視結(jié)果,還要重視過(guò)程,平時(shí)注意訓(xùn)練運(yùn)算方法的多樣性,可以加深對(duì)算理的理解和運(yùn)用,提高運(yùn)算過(guò)程的合理性和靈活性,從而真正的提高運(yùn)算能力。
二、新課講解
溫故知新
與,與相等嗎?為什么?
學(xué)生討論交流,鼓勵(lì)學(xué)生從不同的角度進(jìn)行說(shuō)理,共同歸納總結(jié)出兩條判斷的思路:
1.對(duì)原式進(jìn)行運(yùn)算,利用運(yùn)算的結(jié)果來(lái)判斷;
2.不對(duì)原式進(jìn)行運(yùn)算,只做適當(dāng)變形后利用整體的方法來(lái)判斷。
思考:與,與相等嗎?為什么?
利用整體的方法判斷,把看成一個(gè)數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。
總結(jié)歸納得到:;
三、典例剖析
例1運(yùn)用完全平方公式計(jì)算:
鼓勵(lì)學(xué)生用多種方法計(jì)算,只要言之成理,只要是自己動(dòng)腦筋發(fā)現(xiàn)的,都要給予肯定,同時(shí)還要引導(dǎo)學(xué)生評(píng)價(jià)哪種算法最簡(jiǎn)潔。
例2計(jì)算:
(1);(2).
例3計(jì)算:
訓(xùn)練學(xué)生熟練地、靈活地運(yùn)用完全平方公式進(jìn)行運(yùn)算,進(jìn)一步滲透整體和轉(zhuǎn)化的思想方法。
四、課堂練習(xí)
1.運(yùn)用完全平方公式計(jì)算:
(1);(2);
2.計(jì)算:
(1);(2).
3.計(jì)算:
學(xué)生解答,教師巡視,注意學(xué)生的計(jì)算過(guò)程是否合理,組織學(xué)生對(duì)錯(cuò)誤進(jìn)行分析和點(diǎn)評(píng)。
五、小結(jié)
師生共同回顧完全平方公式的結(jié)構(gòu)特點(diǎn),體會(huì)公式的作用,交流計(jì)算的經(jīng)驗(yàn)。教師對(duì)課堂上學(xué)生掌握不夠牢固的知識(shí)進(jìn)行辨析、強(qiáng)調(diào)與補(bǔ)充,學(xué)生也可以談一談個(gè)人的學(xué)習(xí)感受。
六、布置作業(yè)
P50第2(3)、(4),3題
完全平方公式教學(xué)設(shè)計(jì)篇8
教材分析
1本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過(guò)學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問(wèn)題,對(duì)可能的答案做出假設(shè)與猜想,并通過(guò)多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
學(xué)情分析
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
①同類項(xiàng)的定義。
②合并同類項(xiàng)法則
③多項(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
教學(xué)目標(biāo)
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理
數(shù)、實(shí)數(shù)、代數(shù)式、、;掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、、不等式、函數(shù)等進(jìn)行描述。
(四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。
(五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見(jiàn)解;能從交流中獲益。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡(jiǎn)單的計(jì)算。
難點(diǎn):會(huì)推導(dǎo)完全平方公式
教學(xué)過(guò)程
教學(xué)過(guò)程設(shè)計(jì)如下:
〈一〉、提出問(wèn)題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過(guò)運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?
(2m+3n)2=,(-2m-3n)2=,
(2m-3n)2=,(-2m+3n)2=。
〈二〉、分析問(wèn)題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特點(diǎn)。
(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
(3)三項(xiàng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 薪酬福利管理合同
- 房地產(chǎn)評(píng)估協(xié)議
- 外墻平涂涂料施工工藝流程
- 市政工程安全文明施工措施費(fèi)提取和使用計(jì)劃
- 文明施工管理目標(biāo)及措施
- 大型活動(dòng)場(chǎng)所測(cè)繪應(yīng)急管理方案
- 樁機(jī)施工安全監(jiān)理實(shí)施細(xì)則范文(2篇)
- 中班語(yǔ)言領(lǐng)域教學(xué)方案樣本(二篇)
- 促進(jìn)畜牧業(yè)健康發(fā)展方案(2篇)
- 安全監(jiān)控系統(tǒng)被控設(shè)備安裝拆除規(guī)范規(guī)定模版(3篇)
- 8.臺(tái)球助教速成培訓(xùn)手冊(cè)0.9萬(wàn)字
- 無(wú)縫鋼管焊接作業(yè)指導(dǎo)書(shū)(1)
- 零缺陷與質(zhì)量成本
- 網(wǎng)吧企業(yè)章程范本
- 安徽省書(shū)法家協(xié)會(huì)會(huì)員登記表
- 阿特拉斯基本擰緊技術(shù)ppt課件
- 五格數(shù)理解釋及吉兇對(duì)照
- 婚姻狀況聲明書(shū)
- 新課程理念下的班主任工作藝術(shù)
- 領(lǐng)導(dǎo)激勵(lì)藝術(shù)教材
- 水泥罐抗傾覆驗(yàn)算7頁(yè)
評(píng)論
0/150
提交評(píng)論