《一元二次方程的分式方程》數(shù)學(xué)教學(xué)設(shè)計(jì)4篇_第1頁
《一元二次方程的分式方程》數(shù)學(xué)教學(xué)設(shè)計(jì)4篇_第2頁
《一元二次方程的分式方程》數(shù)學(xué)教學(xué)設(shè)計(jì)4篇_第3頁
《一元二次方程的分式方程》數(shù)學(xué)教學(xué)設(shè)計(jì)4篇_第4頁
《一元二次方程的分式方程》數(shù)學(xué)教學(xué)設(shè)計(jì)4篇_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第第頁《一元二次方程的分式方程》數(shù)學(xué)教學(xué)設(shè)計(jì)(精選4篇)在近幾年中考中,經(jīng)常出現(xiàn)利用一元二次方程解決的應(yīng)用題,這類問題主要考查同學(xué)們利用一元二次方程的相關(guān)知識(shí)分析問題和解決實(shí)際問題的能力,這對(duì)大部分同學(xué)而言仍具有一定的挑戰(zhàn)性。它山之石可以攻玉,下面本文范文為您精心整理了4篇《《一元二次方程的分式方程》數(shù)學(xué)教學(xué)設(shè)計(jì)》,希望可以啟發(fā)、幫助到大朋友、小朋友們。

數(shù)學(xué)《一元二次方程》教案設(shè)計(jì)篇一

教學(xué)內(nèi)容:12.1用公式解一元二次方程(一)

教學(xué)目標(biāo):

知識(shí)與技能目標(biāo):1.使學(xué)生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識(shí)別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).

過程與方法目標(biāo):1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對(duì)概念理解的完整性和深刻性.

情感與態(tài)度目標(biāo):由知識(shí)來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).,數(shù)學(xué)教案-用公式法解一元二次方程。

教學(xué)重、難點(diǎn)與關(guān)鍵:

重點(diǎn):一元二次方程的意義及一般形式.

難點(diǎn):正確識(shí)別一般式中的“項(xiàng)”及“系數(shù)”。

教輔工具:

教學(xué)程序設(shè)計(jì):

程序

教師活動(dòng)

學(xué)生活動(dòng)

備注

創(chuàng)設(shè)

問題

情景

1.用電腦演示下面的操作:一塊長(zhǎng)方形的薄鋼片,在薄鋼片的四個(gè)角上截去四個(gè)相同的小正方形,然后把四邊折起來,就成為一個(gè)無蓋的長(zhǎng)方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長(zhǎng)方形紙片和剪刀,實(shí)際操作一下剛才演示的過程.學(xué)生的實(shí)際操作,為解決下面的問題奠定基礎(chǔ),同時(shí)培養(yǎng)學(xué)生手、腦、眼并用的能力.

2.現(xiàn)有一塊長(zhǎng)80cm,寬60cm的薄鋼片,在每個(gè)角上截去四個(gè)相同的小正方形,然后做成底面積為1500cm2的無蓋的長(zhǎng)方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長(zhǎng)?

教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會(huì)解,說明所學(xué)知識(shí)不夠用,需要學(xué)習(xí)新的知識(shí),學(xué)了本章的知識(shí),就可以解這個(gè)方程,從而解決上述問題.

板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.

學(xué)生看投影并思考問題

通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識(shí)到知識(shí)來源于實(shí)際,并且又為實(shí)際服務(wù),學(xué)習(xí)了一元二次方程的知識(shí),可以解決許多實(shí)際問題,真正體會(huì)學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識(shí),調(diào)動(dòng)學(xué)生積極主動(dòng)參與數(shù)學(xué)活動(dòng)中.同時(shí)讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.

1

1.復(fù)習(xí)提問

(1)什么叫做方程?曾學(xué)過哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含義?

(3)什么叫做分式方程?

2.引例:剪一塊面積為150cm2的長(zhǎng)方形鐵片使它的長(zhǎng)比寬多5cm,這塊鐵片應(yīng)怎樣剪?

引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.

整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.

一元二次方程:只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.

3.練習(xí):指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4x2;

(2)7x2+6=2x(3x+1);

《一元二次方程》的優(yōu)秀教案篇二

一、教學(xué)目標(biāo)

知識(shí)與技能

(1)理解一元二次方程的意義。

(2)能熟練地把一元二次方程整理成一般形式并能指出它的二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。

過程與方法

在分析、揭示實(shí)際問題的數(shù)量關(guān)系并把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型(一元二次方程)的過程中,使學(xué)生感受方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的工具,增加對(duì)一元二次方程的感性認(rèn)識(shí)。

情感、態(tài)度與價(jià)值觀

通過探索建立一元二次方程模型的過程,使學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),增進(jìn)對(duì)方程的認(rèn)識(shí),發(fā)展分析問題、解決問題的能力。

二、教材分析:

教學(xué)重點(diǎn)難點(diǎn)

重點(diǎn):經(jīng)歷建立一元二次方程模型的過程,掌握一元二次方程的一般形式。

難點(diǎn):準(zhǔn)確理解一元二次方程的意義。

三、教學(xué)方法

創(chuàng)設(shè)情境——主體探究——合作交流——應(yīng)用提高

四、學(xué)案

(1)預(yù)學(xué)檢測(cè)

3x-5=0是什么方程?一元一次方程的定義是怎樣的?其一般形式是怎樣的?

五、教學(xué)過程

(一)創(chuàng)設(shè)情境、導(dǎo)入新

(1)自學(xué)本P2—P3并完成書本

(2)請(qǐng)學(xué)生分別回答書本內(nèi)容再

(二)主體探究、合作交流

(1)觀察下列方程:

(35-2x)2=9004x2-9=03y2-5y=7

它們有什么共同點(diǎn)?它們分別含有幾個(gè)未知數(shù)?它們的左邊分別是未知數(shù)的幾次幾項(xiàng)式?

(2)一元二次方程的概念與一般形式?

如果一個(gè)方程通過移項(xiàng)可以使右邊為0,而左邊是只含一個(gè)未知數(shù)的二次多項(xiàng)式,那么這樣的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知數(shù)a≠0),其中,a、b、c分別稱為二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng),如x2-x=56

(三)應(yīng)用遷移、鞏固提高

例1:根據(jù)一元二次方程定義,判斷下列方程是否為一元二次方程?為什么?

x2-x=13x(x-1)=5(x+2)x2=(x-1)2

例2:將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。

解:去括號(hào)得

3x2-3x=5x+10

移項(xiàng),合并同類項(xiàng),得一元二次方程的一般形式

3x2-8x-10=0

其中二次項(xiàng)系數(shù)為3,一次項(xiàng)系數(shù)為-8,常數(shù)項(xiàng)為-10.

學(xué)生練習(xí):書本P4練習(xí)

(四)總結(jié)反思拓展升華

總結(jié)

1、一元二次方程的定義是怎樣的?

2、一元二次方程的一般形式為ax2+bx+c=0(a≠0),一元二次方程的項(xiàng)及系數(shù)都是根據(jù)一般式定義的,這與多項(xiàng)式中的項(xiàng)、次數(shù)及其系數(shù)的定義是一致的。

3、在實(shí)際問題轉(zhuǎn)化為一元二次方程數(shù)學(xué)模型的過程中,體會(huì)學(xué)習(xí)一元二次方程的必要性和重要性。

反思

方程ax3+bx2+cx+d=0是關(guān)于x的一元二次方程的條是a=0且b≠0,是一元一次方程的條是a=b=0且c≠0.

(五)布置作業(yè)

(1)必做題P4習(xí)題1.1A組1.2

(2)選做題:若xm-2=9是關(guān)于x的一元二次方程,試求代數(shù)式(m2-5m+6)÷(m2-2m)的值。

元二次方程的應(yīng)用篇三

第一課時(shí)

一、教學(xué)目標(biāo)

1.使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題。

2.通過列方程解應(yīng)用問題,進(jìn)一步體會(huì)提高分析問題、解決問題的能力。

3.通過列方程解應(yīng)用問題,進(jìn)一步體會(huì)代數(shù)中方程的思想方法解應(yīng)用問題的優(yōu)越性。

二、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題。

2.教學(xué)難點(diǎn):根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。

3.教學(xué)疑點(diǎn):學(xué)生對(duì)列一元二次方程解應(yīng)用問題中檢驗(yàn)步驟的理解。

4.解決辦法:列方程解應(yīng)用題,就是先把實(shí)際問題抽象為數(shù)學(xué)問題,然后由數(shù)學(xué)問題的解決而獲得對(duì)實(shí)際問題的解決。列方程解應(yīng)用題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。

三、教學(xué)過程

1.復(fù)習(xí)提問

(1)列方程解應(yīng)用問題的步驟?

①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答。

(2)兩個(gè)連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))

2.例題講解

例1兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù)。

分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法)a.設(shè)較小的奇數(shù)為x,則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)。

以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法。

解法(一)設(shè)較小奇數(shù)為x,另一個(gè)為,

據(jù)題意,得

整理后,得

解這個(gè)方程,得。

由得,由得,

答:這兩個(gè)奇數(shù)是17,19或者-19,-17。

解法(二)設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。

據(jù)題意,得

整理后,得

解這個(gè)方程,得。

當(dāng)時(shí),

當(dāng)時(shí),。

答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17。

第12頁

元二次方程篇四

[課題]§12.1一元二次方程[教學(xué)目的]使學(xué)生了解整式方程、一元二次方程的意義;使學(xué)生知道并能認(rèn)識(shí)一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。[教學(xué)重點(diǎn)]使學(xué)生知道并能認(rèn)識(shí)一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。[教學(xué)難點(diǎn)]使學(xué)生掌握什么是一元二次方程的二次項(xiàng)和系數(shù)、一次項(xiàng)和系數(shù)以及常數(shù)項(xiàng),[教學(xué)關(guān)鍵]使學(xué)生掌握在指出一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)時(shí),一定要包括它們的符號(hào)。[教學(xué)用具][教學(xué)形式]講練結(jié)合法。[教學(xué)用時(shí)]45′×1[教學(xué)過程][復(fù)習(xí)提問]例方程解應(yīng)用題的一般步驟是什么?[講解新課]引例可由教師提出并分析其中的數(shù)量關(guān)系,設(shè)出未知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程:(80-2x)(60-2x)=1500。(這其中應(yīng)重點(diǎn)復(fù)習(xí)列方程解應(yīng)用題的方法、步驟,或講解或提問應(yīng)視具體情況而定)。提問:如何將上述方程整理?整理后,得:x2-70x+825=0。這里不必多講,只指出:這個(gè)方程(什么方程?這里不談)與我們已經(jīng)學(xué)過的一元一次方程不同,我們學(xué)了這一章,就可以解這個(gè)方程,從而解決上述問題。接著書寫教科書第4頁的問題:剪一塊面積是150cm2的長(zhǎng)方形鐵片,使它的長(zhǎng)比寬多5cm,這塊鐵片應(yīng)該怎樣剪?引導(dǎo)學(xué)生分析題意,設(shè)未知數(shù),列出代數(shù)式,找出相等關(guān)系,列出方程:x(x+5)=150。去括號(hào),得:x2+5x=150?,F(xiàn)在來觀察這個(gè)方程:它的兩邊都是關(guān)于未知數(shù)的整式,指出“這樣的方程叫做整式方程?!本瓦@一點(diǎn)來說它與一元一次方程沒有什么區(qū)別,因而,一元一次方程也是整式方程,但一元一次方程未知數(shù)的次數(shù)是1,而上列方程未知數(shù)的最高次數(shù)是2,所以,只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程。(這樣與一元一次方程對(duì)比著講,既使整式方程的內(nèi)含擴(kuò)大,以加深學(xué)生的印象,也可使學(xué)生深刻了解一元二次方程的意義。)下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?1、3x+2=5x-3;(2x=5)2、x2=4;3、(x-1)(x-2)=x2+8;(3x=-6)4、(x+3)(3x-4)=(x+2)2;(2x2+x-16=0)(上述方程都是整式方程。其中1、3是一元一次方程,2、4是一元二次方程。)上列方程中的4,兩邊展開,得3x2+5x-12=x2+4x+4移項(xiàng),得2x2+x-16=0事實(shí)上,方程x2+5x=150移項(xiàng),得x2+5x-150=0這就是說,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都可以化成下面的形式:ax2+bx+c=0(a≠0)。這種形式叫做一元二次方程的一般形式。這里應(yīng)強(qiáng)調(diào)指出,方程ax2+bx+c=0只有當(dāng)a≠0時(shí),才叫一元二次方程。如果a=0,b≠0,就是一元一次方程了。所以在一般形式中,必須包含a≠0這個(gè)條件。隨后指出,在方程中,ax2,bx,c各項(xiàng)的名稱,并舉例說明。(ax2叫做二次項(xiàng),a叫做二次項(xiàng)系數(shù);bx叫做一次項(xiàng),b叫做一次項(xiàng)系數(shù);c叫做常數(shù)項(xiàng)。)例1把方程3x(x-1)=2(x+2)+8化成一般形式,并寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。解:去括號(hào),得3x2-3x=2x+4+8移項(xiàng),合并同類項(xiàng),得x2-5x-12=0二次項(xiàng)系數(shù)是3;一次項(xiàng)系數(shù)是-5;常數(shù)項(xiàng)是-12。[課堂練習(xí)]教科書第5頁練習(xí)第1,2題。[課堂小結(jié)]通過本節(jié)課的學(xué)習(xí),我們知道了什么是整式方程,什么叫做一元二次方程和一元二次方程的一般形式:ax2+bx+c=0(a≠0)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論