版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
MachineLearning09八月2023MachineLearning08八月20231Machinelearning,asabranchofartificialintelligence,isgeneraltermsofakindofanalyticalmethod.Itmainlyutilizescomputersimulateorrealizethelearnedbehaviorofhuman.09八月2023Machinelearning,asabranch209八月20231)Machinelearningjustlikeatruechampionwhichgohaughtily;
2)Patternrecognitioninprocessofdeclineanddieout;
3)Deeplearningisabrand-newandrapidlyrisingfield.theGooglesearchindexofthreeconceptsince200408八月20231)Machinelearningj309八月2023Theconstructedmachinelearningsystembasedoncomputermainlycontainstwocoreparts:representationandgeneralization.Thefirststepfordatalearningistorepresentthedata,i.e.detectthepatternofdata.Establishageneralizedmodelofdataspaceaccordingtoagroupofknowndatatopredictthenewdata.Thecoretargetofmachinelearningistogeneralizefromknownexperience.Generalizationmeansapowerofwhichthemachinelearningsystemtobelearnedforknowndatathatcouldpredictthenewdata.08八月2023Theconstructedmach4SupervisedlearningInputdatahaslabels.Thecommonkindoflearningalgorithmisclassification.Themodelhasbeentrainedviathecorrespondencebetweenfeatureandlabelofinputdata.Therefore,whensomeunknowndatawhichhasfeaturesbutnolabelinput,wecanpredictthelabelofunknowndataaccordingtotheexistingmodel.09八月2023Supervisedlearning08八月20235UnsupervisedlearningInputdatahasnolabels.Itrelatestoanotherlearningalgorithm,i.e.clustering.Thebasicdefinitionisacoursethatdividethegatherofphysicalorabstractobjectintomultipleclasswhichconsistofsimilarobjects.09八月2023Unsupervisedlearning08八月2026Iftheoutputeigenvectormarkscomefromalimitedsetthatconsistofclassornamevariable,thenthekindofmachinelearningbelongstoclassificationproblem.
Ifoutputmarkisacontinuousvariable,thenthekindofmachinelearningbelongstoregressionproblem.09八月2023Iftheoutputeigenvectormark7ClassificationstepFeatureextractionFeatureselectionModeltrainingClassificationandpredictionRawdataNewdata09八月2023ClassificationstepFeatureext8Featureselection(featurereduction)CurseofDimensionality:Usuallyrefertotheproblemthatconcernedaboutcomputationofvector.Withtheincreaseofdimension,calculatedamountwilljumpexponentially.Corticalfeaturesofdifferentbrainregionsexhibitvarianteffectduringtheclassificationprocessandmayexistsomeredundantfeature.Inparticularafterthemultimodalfusion,theincreaseoffeaturedimensionwillcause“curseofDimensionality”.09八月2023Featureselection(featurered9PrincipalComponentAnalysis,PCAPCAisthemostcommonlineardimensionreductionmethod.Itstargetismappingthedataofhighdimensiontolow-dimensionspaceviacertainlinearprojection,andexpectthevarianceofdatathatprojectthecorrespondingdimensionismaximum.Itcanusefewerdatadimensionmeanwhileretainthemajorcharacteristicofrawdata.09八月2023PrincipalComponentAnalysis,10Lineardiscriminantanalysis,LDAThebasicideaofLDAisprojection,mappingtheNdimensiondatatolow-dimensionspaceandseparatethebetween-groupsassoonaspossible.i.e.theoptimalseparabilityinthespace.Thebenchmarkisthenewsubspacehasmaximumbetweenclassdistanceandminimalinter-objectdistance.09八月2023Lineardiscriminantanalysis,11Independentcomponentanalysis,ICAThebasicideaofICAistoextracttheindependencesignalfromagroupofmixedobservedsignaloruseindependencesignaltorepresentothersignal.09八月2023Independentcomponentanalysis12Recursivefeatureeliminationalgorithm,RFERFEisagreedyalgorithmthatwipeoffinsignificancefeaturestepbysteptoselectthefeature.Firstly,cyclicorderingthefeatureaccordingtotheweightofsub-featureinclassificationandremovethefeaturewhichrankatterminalonebyone.Then,accordingtothefinalfeatureorderinglist,selectdifferentdimensionofseveralfeaturesubsetfronttoback.Assesstheclassificationeffectofdifferentfeaturesubsetandthengettheoptimalfeaturesubset.
09八月2023Recursivefeatureelimination13Classificationalgorithm
DecisiontreeDecisiontreeisatreestructure.Eachnonleafnodeexpressesthetestofafeaturepropertyandeachbranchexpressestheoutputoffeaturepropertyincertainrangeandeachleafnodestoresaclass.Thedecision-makingcourseofdecisiontreeisstartingfromrootnode,testingthecorrespondingfeaturepropertyofwaitingobjects,selectingtheoutputbranchaccordingtotheirvalues,untilreachingtheleafnodeandtaketheclassthatleafnodestoreasthedecisionresult.09八月2023ClassificationalgorithmDecis14NaiveBayes,NBNBclassificationalgorithmisaclassificationmethodinstatistics.Ituseprobabilitystatisticsknowledgeforclassification.Thisalgorithmcouldapplytolargedatabaseandithashighclassificationaccuracyandhighspeed.09八月2023NaiveBayes,NB08八月202315Artificialneuralnetwork,ANNANNisamathematicalmodelthatapplyakindofstructurewhichsimilarwithsynapseconnectionforinformationprocessing.Inthismodel,amassofnodeformanetwork,i.e.neuralnetwork,toreachthegoalofinformationprocessing.Neuralnetworkusuallyneedtotrain.Thecourseoftrainingisnetworklearning.Thetrainingchangethelinkweightofnetworknodeandmakeitpossessthefunctionofclassification.Thenetworkaftertrainingapplytorecognizeobject.09八月2023Artificialneuralnetwork,ANN16k-NearestNeighbors,kNNkNNalgorithmisakindofclassificationmethodbaseonlivingexample.Thismethodistofindthenearestktrainingsampleswithunknownsamplexandexaminethemostofksamplesbelongtowhichclass,thenxbelongstothatclass.kNNisalazylearningmethod.Itstoressamplesbutproceedclassificationuntilneedtoclassify.Ifsamplesetarerelativelycomplex,itmaybeleadtolargecomputationoverhead.Soitcannotapplytostronglyreal-timeoccasion.09八月2023k-NearestNeighbors,kNN08八月17supportvectormachine,SVMMappingthelinearlyinseparabledatainlow-dimensionspacetohigh-dimensionspaceandmakeitlinearlyseparable09八月2023supportvectormachine,SVM0818Crossvalidation,CVThebasicideaofCVisgroupingtherawdatainasense.Onepartistakenastrainset,theotherpartistakenasvalidationset.Primarily,theclassifieristrainedwithtrainset,andthenusevalidationsettotestthereceivedmodelbytraining.09八月2023Crossvalidation,CVThebasic19K-foldcross-validationIn
k-foldcross-validation,theoriginalsampleisrandomlypartitionedinto
k
equalsizedsubsamples.Ofthe
k
subsamples,asinglesubsampleisretainedasthevalidationdatafortestingthemodel,andtheremaining
k
?
1subsamplesareusedastrainingdata.Thecross-validationprocessisthenrepeated
k
times(the
folds),witheachofthe
k
subsamplesusedexactlyonceasthevalidationdata.The
k
resultsfromthefoldscanthenbeaveragedtoproduceasingleestimation.Theadvantageofthismethodoverrepeatedrandomsub-samplingisthatallobservationsareusedforbothtrainingandvalidation,andeachobservationisusedforvalidationexactlyonce.10-foldcross-validationiscommonlyused.09八月2023K-foldcross-validation08八月220Leave-one-outcross-validation,LOOCVWhen
k
=
n
(thenumberofobservations),the
k-foldcross-validationisexactlytheleave-one-outcross-validation.09八月2023Leave-one-outcross-validation21confusionmatrixTP——goldstandardandtestaffirmsufferfromcertainillness;TN——goldstandardandtestaffirmnotsufferfromcertainillness;FP——go
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年調(diào)味糖漿行業(yè)市場發(fā)展現(xiàn)狀及前景趨勢與價值評估研究報告
- 2024-2030年裝修貸款產(chǎn)業(yè)市場發(fā)展分析及發(fā)展趨勢與投資研究報告
- 2024-2030年血紅蛋白儀市場投資前景分析及供需格局研究預(yù)測報告
- 2024-2030年藥物導(dǎo)入治療儀產(chǎn)業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2024-2030年脫堿裝置行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2024-2030年耳機行業(yè)十四五競爭格局分析及投資前景與戰(zhàn)略規(guī)劃研究報告
- 2024-2030年網(wǎng)上購物行業(yè)市場發(fā)展分析及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2024-2030年紡織機行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2024-2030年純棉床墊保護套行業(yè)市場現(xiàn)狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究報告
- 2024-2030年箱包行業(yè)市場深度調(diào)研及供需格局與投資前景研究報告
- 2024-2030年代駕產(chǎn)業(yè)市場深度調(diào)研及發(fā)展趨勢與投資戰(zhàn)略研究分析報告
- 安全治本攻堅三年行動方案及重大事故隱患會議紀要(完整版)
- 安全生產(chǎn)法律法規(guī)清單
- 2024-2030年中國合成革行業(yè)市場發(fā)展分析及發(fā)展與投資前景研究報告
- 《幼兒園標(biāo)準(zhǔn)》課件
- 東營山東東營市中醫(yī)院(東營市傳染病醫(yī)院東營市精神衛(wèi)生中心)招聘46人筆試歷年典型考題及考點附答案解析
- 高級流行病學(xué)與醫(yī)學(xué)統(tǒng)計學(xué)智慧樹知到期末考試答案章節(jié)答案2024年浙江中醫(yī)藥大學(xué)
- 油煙管道系統(tǒng)清洗合同
- 讀后續(xù)寫人與自然類我?guī)椭従育埦盹L(fēng)后花園重建順利融入當(dāng)?shù)厣鐓^(qū)講義-2024屆高三英語二輪復(fù)習(xí)
- 天津市汽車背戶協(xié)議范本
- DZ∕T 0291-2015 飾面石材礦產(chǎn)地質(zhì)勘查規(guī)范
評論
0/150
提交評論