機器學(xué)習(xí)介紹(英文版:備注里有中文翻譯)課件_第1頁
機器學(xué)習(xí)介紹(英文版:備注里有中文翻譯)課件_第2頁
機器學(xué)習(xí)介紹(英文版:備注里有中文翻譯)課件_第3頁
機器學(xué)習(xí)介紹(英文版:備注里有中文翻譯)課件_第4頁
機器學(xué)習(xí)介紹(英文版:備注里有中文翻譯)課件_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

MachineLearning09八月2023MachineLearning08八月20231Machinelearning,asabranchofartificialintelligence,isgeneraltermsofakindofanalyticalmethod.Itmainlyutilizescomputersimulateorrealizethelearnedbehaviorofhuman.09八月2023Machinelearning,asabranch209八月20231)Machinelearningjustlikeatruechampionwhichgohaughtily;

2)Patternrecognitioninprocessofdeclineanddieout;

3)Deeplearningisabrand-newandrapidlyrisingfield.theGooglesearchindexofthreeconceptsince200408八月20231)Machinelearningj309八月2023Theconstructedmachinelearningsystembasedoncomputermainlycontainstwocoreparts:representationandgeneralization.Thefirststepfordatalearningistorepresentthedata,i.e.detectthepatternofdata.Establishageneralizedmodelofdataspaceaccordingtoagroupofknowndatatopredictthenewdata.Thecoretargetofmachinelearningistogeneralizefromknownexperience.Generalizationmeansapowerofwhichthemachinelearningsystemtobelearnedforknowndatathatcouldpredictthenewdata.08八月2023Theconstructedmach4SupervisedlearningInputdatahaslabels.Thecommonkindoflearningalgorithmisclassification.Themodelhasbeentrainedviathecorrespondencebetweenfeatureandlabelofinputdata.Therefore,whensomeunknowndatawhichhasfeaturesbutnolabelinput,wecanpredictthelabelofunknowndataaccordingtotheexistingmodel.09八月2023Supervisedlearning08八月20235UnsupervisedlearningInputdatahasnolabels.Itrelatestoanotherlearningalgorithm,i.e.clustering.Thebasicdefinitionisacoursethatdividethegatherofphysicalorabstractobjectintomultipleclasswhichconsistofsimilarobjects.09八月2023Unsupervisedlearning08八月2026Iftheoutputeigenvectormarkscomefromalimitedsetthatconsistofclassornamevariable,thenthekindofmachinelearningbelongstoclassificationproblem.

Ifoutputmarkisacontinuousvariable,thenthekindofmachinelearningbelongstoregressionproblem.09八月2023Iftheoutputeigenvectormark7ClassificationstepFeatureextractionFeatureselectionModeltrainingClassificationandpredictionRawdataNewdata09八月2023ClassificationstepFeatureext8Featureselection(featurereduction)CurseofDimensionality:Usuallyrefertotheproblemthatconcernedaboutcomputationofvector.Withtheincreaseofdimension,calculatedamountwilljumpexponentially.Corticalfeaturesofdifferentbrainregionsexhibitvarianteffectduringtheclassificationprocessandmayexistsomeredundantfeature.Inparticularafterthemultimodalfusion,theincreaseoffeaturedimensionwillcause“curseofDimensionality”.09八月2023Featureselection(featurered9PrincipalComponentAnalysis,PCAPCAisthemostcommonlineardimensionreductionmethod.Itstargetismappingthedataofhighdimensiontolow-dimensionspaceviacertainlinearprojection,andexpectthevarianceofdatathatprojectthecorrespondingdimensionismaximum.Itcanusefewerdatadimensionmeanwhileretainthemajorcharacteristicofrawdata.09八月2023PrincipalComponentAnalysis,10Lineardiscriminantanalysis,LDAThebasicideaofLDAisprojection,mappingtheNdimensiondatatolow-dimensionspaceandseparatethebetween-groupsassoonaspossible.i.e.theoptimalseparabilityinthespace.Thebenchmarkisthenewsubspacehasmaximumbetweenclassdistanceandminimalinter-objectdistance.09八月2023Lineardiscriminantanalysis,11Independentcomponentanalysis,ICAThebasicideaofICAistoextracttheindependencesignalfromagroupofmixedobservedsignaloruseindependencesignaltorepresentothersignal.09八月2023Independentcomponentanalysis12Recursivefeatureeliminationalgorithm,RFERFEisagreedyalgorithmthatwipeoffinsignificancefeaturestepbysteptoselectthefeature.Firstly,cyclicorderingthefeatureaccordingtotheweightofsub-featureinclassificationandremovethefeaturewhichrankatterminalonebyone.Then,accordingtothefinalfeatureorderinglist,selectdifferentdimensionofseveralfeaturesubsetfronttoback.Assesstheclassificationeffectofdifferentfeaturesubsetandthengettheoptimalfeaturesubset.

09八月2023Recursivefeatureelimination13Classificationalgorithm

DecisiontreeDecisiontreeisatreestructure.Eachnonleafnodeexpressesthetestofafeaturepropertyandeachbranchexpressestheoutputoffeaturepropertyincertainrangeandeachleafnodestoresaclass.Thedecision-makingcourseofdecisiontreeisstartingfromrootnode,testingthecorrespondingfeaturepropertyofwaitingobjects,selectingtheoutputbranchaccordingtotheirvalues,untilreachingtheleafnodeandtaketheclassthatleafnodestoreasthedecisionresult.09八月2023ClassificationalgorithmDecis14NaiveBayes,NBNBclassificationalgorithmisaclassificationmethodinstatistics.Ituseprobabilitystatisticsknowledgeforclassification.Thisalgorithmcouldapplytolargedatabaseandithashighclassificationaccuracyandhighspeed.09八月2023NaiveBayes,NB08八月202315Artificialneuralnetwork,ANNANNisamathematicalmodelthatapplyakindofstructurewhichsimilarwithsynapseconnectionforinformationprocessing.Inthismodel,amassofnodeformanetwork,i.e.neuralnetwork,toreachthegoalofinformationprocessing.Neuralnetworkusuallyneedtotrain.Thecourseoftrainingisnetworklearning.Thetrainingchangethelinkweightofnetworknodeandmakeitpossessthefunctionofclassification.Thenetworkaftertrainingapplytorecognizeobject.09八月2023Artificialneuralnetwork,ANN16k-NearestNeighbors,kNNkNNalgorithmisakindofclassificationmethodbaseonlivingexample.Thismethodistofindthenearestktrainingsampleswithunknownsamplexandexaminethemostofksamplesbelongtowhichclass,thenxbelongstothatclass.kNNisalazylearningmethod.Itstoressamplesbutproceedclassificationuntilneedtoclassify.Ifsamplesetarerelativelycomplex,itmaybeleadtolargecomputationoverhead.Soitcannotapplytostronglyreal-timeoccasion.09八月2023k-NearestNeighbors,kNN08八月17supportvectormachine,SVMMappingthelinearlyinseparabledatainlow-dimensionspacetohigh-dimensionspaceandmakeitlinearlyseparable09八月2023supportvectormachine,SVM0818Crossvalidation,CVThebasicideaofCVisgroupingtherawdatainasense.Onepartistakenastrainset,theotherpartistakenasvalidationset.Primarily,theclassifieristrainedwithtrainset,andthenusevalidationsettotestthereceivedmodelbytraining.09八月2023Crossvalidation,CVThebasic19K-foldcross-validationIn

k-foldcross-validation,theoriginalsampleisrandomlypartitionedinto

k

equalsizedsubsamples.Ofthe

k

subsamples,asinglesubsampleisretainedasthevalidationdatafortestingthemodel,andtheremaining

k

?

1subsamplesareusedastrainingdata.Thecross-validationprocessisthenrepeated

k

times(the

folds),witheachofthe

k

subsamplesusedexactlyonceasthevalidationdata.The

k

resultsfromthefoldscanthenbeaveragedtoproduceasingleestimation.Theadvantageofthismethodoverrepeatedrandomsub-samplingisthatallobservationsareusedforbothtrainingandvalidation,andeachobservationisusedforvalidationexactlyonce.10-foldcross-validationiscommonlyused.09八月2023K-foldcross-validation08八月220Leave-one-outcross-validation,LOOCVWhen

k

=

n

(thenumberofobservations),the

k-foldcross-validationisexactlytheleave-one-outcross-validation.09八月2023Leave-one-outcross-validation21confusionmatrixTP——goldstandardandtestaffirmsufferfromcertainillness;TN——goldstandardandtestaffirmnotsufferfromcertainillness;FP——go

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論