![高數(shù)下冊(cè)10十章_第1頁](http://file4.renrendoc.com/view/74f538bed437b4600c6d558d2061e4b2/74f538bed437b4600c6d558d2061e4b21.gif)
![高數(shù)下冊(cè)10十章_第2頁](http://file4.renrendoc.com/view/74f538bed437b4600c6d558d2061e4b2/74f538bed437b4600c6d558d2061e4b22.gif)
![高數(shù)下冊(cè)10十章_第3頁](http://file4.renrendoc.com/view/74f538bed437b4600c6d558d2061e4b2/74f538bed437b4600c6d558d2061e4b23.gif)
![高數(shù)下冊(cè)10十章_第4頁](http://file4.renrendoc.com/view/74f538bed437b4600c6d558d2061e4b2/74f538bed437b4600c6d558d2061e4b24.gif)
![高數(shù)下冊(cè)10十章_第5頁](http://file4.renrendoc.com/view/74f538bed437b4600c6d558d2061e4b2/74f538bed437b4600c6d558d2061e4b25.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、若平面域D為[a,b]上的X型域,即:平面域D在x軸上的投影區(qū)間為[a,b],"x0
?
(a,b),x
=x0從下往上穿過D時(shí)與D的邊界至多有2個(gè)交點(diǎn)且固定地y
=j1
(x)為進(jìn)線y
=j2
(x)為出線,則:DX
={a
£
x
£b,j1(x)
£
y
£j2
(x)}復(fù)習(xí):直標(biāo)系下平面域的解析表示2、若平面域D為[c,d
]上的Y型域,即:平面域D在y軸上的投影區(qū)間為[c,d
],"y0
?
(c,d
),y
=y0從左往右穿過D時(shí)與D的邊界至多有2個(gè)交點(diǎn)且固定地x
=w1
(y)為進(jìn)線x
=w
2
(y)為出線,則:DY
={c
£
y
£d,w1(y)£
x
£w2
(y)}注:任意平面域均能分塊成X或Y型域.如(1)D由y
=x與y
=x2圍成:X\
D=D
={0£x
£1,x2
£
y
£x}D=DY
={0£
y
£1,
y
£x
£
y}2y
=
x x
=
y,
y
=
x2
x
=–
y,y
=
xO(0,0),
A(1,1)y
=
xA(2)D由x
=y2與y
=x
-2圍成:
B(4,2)A(1,-1)y
=
x
-2x
=
y2Bx
=
y2
y
=–
x,
y
=
x
-2
x
=
y
+2,A\
D
=
D
={-1£
y
£
2,
y2
£
x
£
y
+2}YD
=DX
={0
£
x
£1,-
x
£
y
£
x}{1
£
x
£
4,
x
-
2
£
y
£
x}\
D=D
={0£x
£1,
x2
£
y
£1}XD=DY
={0£y£1,0£x£
y}(3)D由x
=0,y
=x2
,y
=1圍成:
y
=
x2
x
=
–
yD
A
y
=
x2
A(1,1),
B(-1,1)
y
=1BY\
D
=D
={-2
£
y
£1,
y2
£
x
£2-y}D=DX
={0£x£1,-
x
£y£
x}{1£x£2,-
x
£y£2-x}ABD(4)D由x
=y2
,x
=2
-y圍成x
=
y2
y
=–
x,
x
=
2
-
yy
=
2
-
x,
A(1,1),
B(4,-2)x
=
y2x
=
2
-
yD
=
DY
={0
£
y
£1,1-
y
£
x
£1}{1£
y
£
2,0
£
x
£1}(5)D由y
=0,y
=2;x
=1-y,x
=1圍成:
x
=1-y y
=1-x,
如圖,(1,2)(0,2)\
D=DX
={0£x
£1
,1-x
£
y
£2}(0,1)(1,0)(6)如圖:D
={(x,y)|
x
|
+|
y
|£
1}(0,1)(-1,0)(1,0)(0,-1)x1、若D
=
DX
={a
£
x
£
b,j1(x)
£
y
£j2
(x)},則:10.2.1
二重積分的計(jì)算法(一)(2j
(
x)j1
(
x)f
(x,
y)dy
dxbD
af
(x,
y)ds
=
1f
(x,
y)dybadxj2
(
x)j
(
x)=2、若D
=
DY
={c
£
y
£
d,w1(y)
£
x
£w2
(y)},則:dD
f
(x,
y)dx
dy2w
(
y)c
w1
(
y)f
(x,
y)ds
==dcf
(x,
y)dxdy1w
2
(
y)w
(
y)xyds
,D例1(1)求2x
圍成的閉域.D:y
=x與y
=解:作D草圖XD=D
={0£x
£1,x2£
y
£x}=1012]dx2[(
xy
)2
xx=10521312-
x
)dx(
x1
1
18
12
24=
-=xydyx
x2\1D
0xyds
=
dx=10321
-
12
2y
)dy(
y=10212]dy[(
yx
)yy另解:作D草圖D=DY
={0£
y
£1,y
£x
£
y}
xydxyy
\1D
0xyds
=
dy1
1
18
12
24=
-=例1(2)求A
=D
xyds
,D:由x
=y2與y=x
-2圍成的閉域.解:作D草圖
B(4,2)A(1,-1)y
=
x
-2x
=
y2\
D
=
D
={-1£
y
£
2,
y2
£
x
£
y
+2}Y=2-112]dy
=[(
yx
)2
y+2y2ABxydxy
2
y+2\
A
=
dy-12例1(3)求A
=D
(x
+y)ds
,其中D:D1
={0
£
y
£1,
1
y
£
x
£
y}22D2
={0
£
y
£1,-
y
£
x
£-1
y}
\
A
=21DD(x
+
y)ds
+
(x
+
y)dsD2
D1y
=x2與y
=4x2及y
=1圍成閉域解:作D草圖D
=D1
D2103
2283
1103
221-
y
+
y
)dyy
+
y
)dy+
(83=
(13
252
1022=y
dy
=
y
0
=5
5(x
+
y)dxy-
yyy
=
dy2-1(
x
+
y)dx+
dy121010(x
+
y)ds(x
+
y)ds
+\
A
=21DD1)畫D的草圖;2)求邊界交點(diǎn);選積分次序確定上下限: 后積先定限,總是點(diǎn)到點(diǎn); 限內(nèi)畫射線,總是線到線;先交為下限,后交為上限;區(qū)域少分塊,積分計(jì)算簡(jiǎn).計(jì)算兩次定積分.▲直標(biāo)系下求二重積分:f
(x,
y)dycb
dD
a
f
(x,
y)ds
=
dx3、若D={a
£x
£b,c
£
y
£d}=[a,b]·[c,d],則:f
(x,
y)dxdybadc=4、若D
={a
£
x
£b,c
£
y
£
d}=[a,b]·[c,d],且f
(x,y
)=f1
(x
)f
2
(y
),則:f2
(
y)dycb
dD
a
f
(x)dx1f
(x,
y)ds
=ydyx
dx
y
dy
-
dx
dy
-
xdx=210
121211
01
2020
0
1
13
2
3
2=[(1
x3
)
1
]-[(1
x2
)
1
]
[1
y3
)
2
]-[(1
y2
)
2
]1
7
3
73
6
2
3=-
- =
-2
2D(x
-
xy
-
y)ds
,例2(1)求A
=其中D
=[0,1]·[1,
2]
={0
£
x
£1,
1£
y
£
2}.解:D
={0
£
x
£1,
1£
y
£
2}
\
A
=D
Dx
ds
-
xy
ds
-Dyds222D
ay f
(x)ds例2(2)已知D
=[a,b]·[0,1]={a
£
x
£
b,0
£
y
£1}b且
=1,求
f
(x)dx.解:D
={a
£
x
£
b,0
£
y
£1}13f
(x)dx
=1ba=f
(x)dx
=
3\ba
\1
0
22y f
(x)dy
dybD
as
=
f
(x)dx\De
ds-(
x+
y
)=[(-e-x
)
2]
[(-e-y
)
1
]0
0=(1-e-2)(1-e-1)D:由x
=0,x
=2及y
=0,y
=1圍成.解:D
=[0,2]·[0,1]={0
£
x
£2,0
£
y
£1}且e-(x+y)
=e-x
e-ye
dye
dx-y-x=02
10例2(3)求D-(
x+
y
)e
ds
,其中2110已知:f
(x)=f
(x)dx.-
ye
dy,求A
=x(2110x所求A
=e dy
dx-
y2
e-y
關(guān)于y的原函數(shù)不能表成初等函數(shù),2
2而e-
y
關(guān)于x的原函數(shù)為xe-
y
,\可考慮改變積分順序求解.[分析]:畫D的草圖:四曲線圍成;改變D的類型:觀察草圖得.注1、D轉(zhuǎn)型后有時(shí)需分塊或合并.2、遇原函數(shù)不能表成初等函數(shù)時(shí)往往考慮將D轉(zhuǎn)型后求解.5、交換積分次序:
(1)A
=112f
(x,
y)dyxD
0f
(x,
y)ds
=
dx例3、改變積分次序:f
(x,
y)ds
=(2)A=yDf
(x,
y)dxdy2-y21-2
(3)A
=1101-yfdx+
dy1021Dfds
=fdxdyX解:D
=
D
={0
£
x
£1,
x2
£
y
£1}x
=0,x
=1;y
=x2
,y
=1圍成\
D
=
DY
={0
£
y
£1,0
£
x
£
y}y\
A=
dyf
(x,
y)dx010
(1)A
=112f
(x,
y)dyxD
0f
(x,
y)ds
=
dx例3、改變積分次序:畫D草圖:DY解:D
=D
={-2£
y
£1,
y2
£
x
£2-y}畫D草圖:
(2)A=yf
(x,
y)dx1D
-22-y2f
(x,
y)ds
=
dyf
(x,
y)dy+\
A=-
xdx1
x0\
D=DX
={0£x£1,-
x
£y£
x}{1£x£2,-
x
£y£2-x}-
xf
(x,
y)dydx2-x21y
=-2,y
=1;x
=y2
,x
=2
-y圍成A(1,1)B(4,-2)D
(3)A
=1101-yfdx+
dy102D
1fds
=
dyfdx解:D=DY
={0£
y
£1,1-y
£x
£1}{1£
y
£2,0£x
£1}畫D=D1+D2草圖:\
D=DX
={0£x
£1
,1-x
£
y
£2}\
A
=1
201-xfdydxy
=0,y
=1;x
=1-y,x
=1圍成D12y
=1,y
=2;x
=0,x
=1圍成D1DD2=D1
+D2,例4、求I
=1102y2xD
f
(x,
y)ds
=
dxxe
dy21012yye
dy=212014ye
d(y
)=1014=
1
ey24=
(e-1)
0
002[(e
1
x2
)
y
]dy10y21
y
y2\
I
=
dy
xe dx
=2解:D
=
DX
={0
£
x
£1,
x
£
y
£1},由例3(1)D
=
DY
={0
£
y
£1,0
£
x
£
y}10x
sin
y
dyyf
(x,
y)ds
=Dex1、求I
=xdxY解:D
=
D
={0
£
y
£1,
y2
£
x
£
y}\
I=dxdysinyy2
y1
y010=
[(1-
y)siny]dy==sin
ydy
-y
sin
ydy1010分部積分2110ex2、已知f
(x)=f
(x)dx.-
ye
dy,求A
=x(2110x解:所求A
=e dy
dx-
y=D-ye
ds2D
=
DX
={0
£
x
£1,
x
£
y
£1}=
DY
={0
£
y
£1,0
£
x
£
y}(2100y\
A
=e dx
dy-
y210ye
dy-
y=21-
y
2(1-e-1
)01212e d
(-y
)
==
-f
(x,
y)ds,
f
(x,-y)
=
f
(x,
y)f
(x,-y)
=-f
(x,
y)*20,DA
=(1)D關(guān)于x軸對(duì)稱,D*
={(x,
y)?
D,
y
?0}記A
=
D
f
(x,
y)ds6、對(duì)稱區(qū)域上二重積分的性質(zhì):
\
A
=f
(x,
y)dybD
aj(x)-j(x)f
(x,
y)ds
=
dx證明:如圖y
=j(x)y
=
-j(x)設(shè)"x?[a,b],j(x)>0,則:abxD*D
=
DX
={a
£
x
£b,-j(x)
£
y
£j(x)}Df
(x,
y)dy
=0則A
=
bD
aj(x)-j(x)f
(x,
y)ds
=
dx(I)若f
(x,y)關(guān)于y為奇函數(shù):f
(x,-y)=-f
(x,y),XD*
=
D*
={a
£
x
£b,0
£
y
£j(x)}(I)若f
(x,y)關(guān)于y為偶函數(shù):f
(x,-y)=f
(x,y),
則A
=0f
(x,
y)dybD
af
(x,
y)dj(x)s
=
2
dx\
A
=
2D*
f
(x,
y)ds*20,f
(x,
y)ds,
f
(-x,
y)
=
f
(x,
y)DA
=(2)D關(guān)于y軸對(duì)稱,D*
={(x,
y)?
D,
x
?0}f
(-x,
y)
=-f
(x,
y)(3)若D關(guān)于直線y
=x對(duì)稱,則D
f
(x,y)ds
=D
f
(y,x)dsx2
yds
=
02
2x
+
y
£2
x例如(1)xyds
=
0+
£1y2(2)x2(3)x
+y
£a(x
+
y3
sinx2
+2)ds2
2
2ds
=
2pa22
2
2=
0
+0
+2x
+y
£a=(5)|x|+|y|£1(x
+
y)2
ds(展開、分離、用對(duì)稱性)x?0,
y
?0=
8x+
y£1x2
ds2001
x23=
8dxx dy
=2
2|x|+|
y|£1(4)
x y
ds=
4x+y£1x?0,
y?0x2
y2ds2x2
2x222ds
,其中D:|
x
|
+|
y
|£1.x
+
yD
x
+
y例5、求A
=解:
D關(guān)于直線y
=x對(duì)稱,且S
(D)=2x2
y2\
A=D
x2
+y2
ds
=D
x2
+y2
dsx2
+y2x2
+y2ds
=S(D)
=2D2A=\
A
=1(0,1)(-1,0)
(1,0)(0,-1)x利用對(duì)稱性另解例1(3):
D
=D1
D2關(guān)于y軸對(duì)稱2D1
={0
£
y
£1,
1
y
£
x
£
y}
\DD
Ds
=
xds
+
yds(x
+
y)d1=0+2Dydsydxy
1210=
2
ydy1120=2
y(
y-
y)dy
=2512D
D小結(jié):1、直標(biāo)系下二重積分的計(jì)算:X型域、Y型域、特殊矩形域.2、交換積分順序的方法及其應(yīng)用.3、對(duì)稱區(qū)域上二重積分的性質(zhì)及其應(yīng)用.作業(yè)10--2.1:153--155頁1(2,3),2(1,3,4),6(1,4),8例6,7|
y
-
x2
|dsD例6、求I
=2 |
y
-x
|
=
y
-x2
,(x,
y)?
D2
x2
-y,(x,
y)?
D1D
={-1£
x
£1,0
£
y
£2}2D
={(x,y)?
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京課改版歷史八年級(jí)下冊(cè)第2課《新中國(guó)的初步鞏固》聽課評(píng)課記錄
- 人民版道德與法治九年級(jí)上冊(cè)4.2《城鄉(xiāng)差距》聽課評(píng)課記錄
- 招投文件合同范本(2篇)
- 生物燃料鍋爐購(gòu)買合同(2篇)
- 人教版數(shù)學(xué)七年級(jí)下冊(cè)《7-2-2用坐標(biāo)表示平移》聽評(píng)課記錄
- 魯人版道德與法治九年級(jí)上冊(cè)9.1《公正律師法律援助》配套聽課評(píng)課記錄
- 湘師大版道德與法治七年級(jí)上冊(cè)2.3《快樂學(xué)習(xí)》聽課評(píng)課記錄
- 道德與法治部編版七年級(jí)上冊(cè)同步聽課評(píng)課記錄《第8課 生命可以永恒嗎》
- 【部編版】八年級(jí)歷史上冊(cè)《鴉片戰(zhàn)爭(zhēng)》公開課 聽課評(píng)課記錄及教學(xué)反思
- 蘇科版數(shù)學(xué)八年級(jí)上冊(cè)《課題學(xué)習(xí) 關(guān)于勾股定理的研究》聽評(píng)課記錄
- 財(cái)務(wù)管控的間接成本
- 藏族唐卡藝術(shù)特色分析
- 操作系統(tǒng)課程設(shè)計(jì)報(bào)告
- 護(hù)士團(tuán)隊(duì)的協(xié)作和領(lǐng)導(dǎo)力培養(yǎng)培訓(xùn)課件
- QFD模板含計(jì)算公式計(jì)分標(biāo)準(zhǔn)說明模板
- 醫(yī)院護(hù)理培訓(xùn)課件:《早產(chǎn)兒姿勢(shì)管理與擺位》
- 人工智能在生物醫(yī)學(xué)倫理與法律中的基因編輯與生命倫理問題研究
- 《論文的寫作技巧》課件
- 國(guó)有資產(chǎn)管理辦法-國(guó)有資產(chǎn)管理辦法條例
- 公務(wù)車輛定點(diǎn)維修車輛保養(yǎng)(附彩圖) 投標(biāo)方案
- 00015-英語二自學(xué)教程-unit3
評(píng)論
0/150
提交評(píng)論