麥肯錫+凈零材料轉(zhuǎn)型:對全球供應(yīng)鏈的影響_第1頁
麥肯錫+凈零材料轉(zhuǎn)型:對全球供應(yīng)鏈的影響_第2頁
麥肯錫+凈零材料轉(zhuǎn)型:對全球供應(yīng)鏈的影響_第3頁
麥肯錫+凈零材料轉(zhuǎn)型:對全球供應(yīng)鏈的影響_第4頁
麥肯錫+凈零材料轉(zhuǎn)型:對全球供應(yīng)鏈的影響_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

McKinseyonRisk

Number13,October2022

MaterialsPractice

Thenet-zeromaterialstransition:Implicationsforglobalsupplychains

Themetalsandmineralsindustriesmust

adapttheirsupplychainstoprovidecritical

materialsfortheenergytransition.

Authors

PatriciaBingoto

MichelFoucart

MariaGusakova

ThomasHundertmark

MichelVanHoey

July2023

Executivesummary

Increasinglyboldclimatetargetsarechangingglobalmaterialssupplychains,totheextentthatthetransitiontoanet-zeroemissionseconomyhassparkeda“materialstransition.”Thisreportaimstoprovideanintegratedperspectiveonthesesupply-chainchanges,includingmaterialsdemand,shortagesthatcanbeexpected,andkeyactionsthatwillberequiredtobalancetheequationandsafeguardthespeedofthetransition.

Withthesepointsinmind,ourresearchexploresthefollowingkeyfindings:

Materialsareacriticalenablerofthenet-zerotransition.Theworldhasembarkedonanambitiousdecarbonizationjourneytowardanet-zeroemissionseconomy,whichwillrequirefundamentaltechnologyshiftsacrossindustriesatanunprecedentedspeed.Thesetechnologiesoftenrequiremorephysicalmaterialsforthesameoutputwhencomparedwiththeirconventionalcounterpartsduringtheconstructionphase.Forexample,batteryelectricvehicles(BEVs)aretypically15to20percentheavierthancomparableinternal-combustionengine(ICE)vehiclesandwillthereforebecomeakeydriverformaterialsdemandinthecomingdecades.Consequently,theextenttowhichglobalmaterialssupplychainscankeepupwithnewandacceleratingsourcesofdemandwillbeacriticaldeterminantofglobaldecarbonizationrates.

Evenwiththecurrentdecarbonizationtrajectorytrendingtoward2.4?Celsius,thesupplyofmanymineralsandmetalsembeddedinkeylower-carbontechnologieswillfaceashortageby2030.Whilesomematerials,suchasnickel,mayexperiencemodestshortages(approximately10to20percent),others,suchasdysprosium,whichisamagneticmaterialusedinmostelectricmotors,couldseeshortagesofupto70percentofdemand.Unlessmitigationactionsareputinplace,suchshortageswouldlikelyhindertheglobalspeedofdecarbonizationbecausecustomerswouldbeunabletoshifttolower-carbonalternatives.Moreover,theseshortageswouldleadtopricespikesandvolatilityacrossmaterials,whichinturnwouldmakethetechnologiesinwhichtheyareembeddedmoreexpensiveandfurtherslowadoptionrates.

Wewillcontinuetoseeahighconcentrationofmineralandmetalssuppliesinahandfulofcountries,including,forexample,China(rare-earthelements),theDemocraticRepublicoftheCongo(cobalt),andIndonesia(nickel).

Combinedwitharegulatorylandscapethatisincreasinglyfocusedonregionalization—asseenthroughtheUSInflationReductionActandtheEUGreenDealIndustrialPlan,forexample—theseconcentratedsuppliescouldaffectregionalaccesstomaterialswithinthescopeofcertainagreementareas,evenwhentheglobalmarketisbalanced.Atthesametime,suchconcentrationcouldalsoofferopportunitiestotraditionalminingcountriestodeveloprefiningactivitiesdomestically.

Harmonizedactionsonsupply,demand,innovation,andpolicywillberequiredtobalancetheequationandsafeguardthespeedofthetransition.

—Supply.Itiscrucialtoensurethetimelyscale-upofprojectsthathavealreadybeenannounced,whichwillrequire

miningtoacceleratebeyondhistoricalgrowthratesformanymaterialswhilesimultaneouslydoublingdownonexplorationtoensurefurtherscale-upofsupplybeyond2030.Investmentsinmining,refining,andsmeltingwillneedtoincreasetoapproximately$3trillionto$4trillionby2030(about$300billionto$400billionperyear).1Laborcapacitywillneedtobeincreasedby300,000to600,000specializedminingprofessionals,andanadditional200to500gigawattsof(ideallylow-carbon)energywillneedtocomeonlineby2030topowertheseassets,equivalentto5to10percentofestimatedsolarandwindpowercapacityby2030.Finally,thescale-upwillrequiresmoothpermittingprocesses,timelyinfrastructuredeployment,equipmentavailability,andadequatewaterresources.

1

Thisrepresentsa50percentincreasecomparedtothepreviousdecade,inacontextwheremininginvestmentshavebeendecliningintherecentpast(approximately$260billionin2012toapproximately$150billionin2019,adeclineofabout40percent).Moreover,capitalwillneedtoberedirectedtowardnewmaterials,withstableinvestmentsinironorebuttwicetheinvestmentsincopperandaneightfoldincreaseininvestmentsinlithiumexpected.

Materialstransition:Implicationsofthenet-zerotransitiononglobalsupplychains1

—Demand.Downstreamindustrieswillneedtoshiftdemandpatternstowardproventechnologiesthatareless

materials-intensiveorthatrequiredifferentmaterialsforwhichsupplyislessconstrained.

—Innovation.Investmentsinmaterialsinnovationandbreakthroughtechnologiesshouldbeamplified.Onthe

demandside,thismightinvolveexploringmaterialsubstitutionoptionsforlong-term-constrainedorregionallyconcentratedmaterials.Onthesupplyside,investorscouldconsiderfocusingonenhancedrecyclingpracticesfornewmaterialssuchasrare-earthminerals,aswellasinnovativesolutionstoincreasethethroughputofexistingassets.

—Policy.Newpoliciesmayfacilitatethescale-upofsupply,suchasbystreamliningpermittingproceduresfornew

assetdevelopments.Policiescouldalsoenableademandshifttowardalternativetechnologiesbyguaranteeingalevelplayingfieldacrossdifferenttechnologicaloptions,forexample,andsafeguardingregionalsecurityofsupplyandindustrycompetitiveness.

Stakeholderscanincreasethelikelihoodofsuccessbydevelopingstrategiesthatofferoptionalityandresilienceacrossabroadrangeofglobalresponsestomaterialshortages.Asafirststeptowardmitigatingriskandtappingintothevastopportunitiespresentedbythematerialstransition,itwillbecriticalforgovernmentsandcompaniesaliketomaintainorstrengthentheirunderstandingofthedynamicsoftheglobalmaterialssupplychainandpotentiallong-termscenarios.Forgovernments,doingsocouldhelpshinealightonthesecurityofsupplyandsafeguardthelong-termcompetitivenessoflocalindustries.Forcompanies,itcaninformdecisiveactionsthataremorelikelytopositionthemasindustryleadersintheyearstocome.

1Materialstransition:Implicationsofthenet-zerotransitiononglobalsupplychains

7

5

Materials

andmetals

3,000

TheanalysespresentedinthisreportbringtogetherinsightsfromMcKinsey’sGlobalEnergyPerspectiveonenergytransitionpathways,McKinseyMineSpansonmineralsandmetals,theMcKinseyCenterforFutureMobility(MCFM)ontransportelectrification,andMcKinseyBatteryInsightsonbatterytechnologyadoption.

Anindustryinflux:Growthinmaterials

Thematerialsindustry4hasbeenanimportantdriveroftheglobaleconomyoverthepasttwodecades,increasingitsshareofglobalGDPfromabout4percentin2000to7percentin2022(Exhibit1).Thatsaid,theindustry’sgrowthhasnotbeenlinear:comingoutofa“super

cycle”from2000tothe2008–09financial

crisis,mainlydrivenbyChina’sindustrialization,

industryrevenueflatteneduntil2020asglobal

economicgrowthslowedandpricesformost

materialseitherstabilizedorgraduallydeclined.

Thenexttwoyearswereagainmarkedbysteep

increasesinbothrevenuesandprofitability,

primarilyspurredbysupplychaindisruptions

andincreasedenergypricesinresponsetothe

COVID-19pandemicandtheinvasionofUkraine.

Sincethen,pricesformostmaterialshavecome

down,butindustryrevenueaswellasprofitability

remainwellabovehistoricallevels.

Projectionsforthematerialsindustryshowthat

revenuegrowthcouldoutpaceGDPgrowth

inthecomingdecade,propelledpartiallyby

4Includingmetalsandminerals,plasticresinsandsyntheticrubber,wood,cement,andglass.

Exhibit1

Revenuesofthematerialsindustry,1

nominal,$billion

CAGR,

2000–22,%

6,000+5×

Plastics

5,000

Buildingmaterials

4,000

10

2,000

1,000

0

200020052010201520202022

Shareofglobal~4~5~6~6~5~7

GDP,%

1Excludingcoalanduranium.

Source:Eurostat;ITCTradeMap;WorldBank;McKinseyMineSpans;McKinseyanalysis

McKinsey&Company

3Materialstransition:Implicationsofthenet-zerotransitiononglobalsupplychains

growingdemandbutalsobytheinflation-drivensteepeningofglobalminingandmetalscostcurves,ore-gradedeterioration,5andlaborshortages,amongotherfactors.

Thechallengeforthematerialsindustrywillbehowtocapturethisopportunityinasustainablewaywhiledoublingdownonoperationalefficiencytoavoidpriceinflationbeyondaffordablelevels(seesidebar“Thematerialstrilemma”).Thisreportfocusesspecificallyonavailabilityofasubsetofmineralsandmetals,withtheunderstandingthatsustainabilityandaffordabilitycanandlikelywillfurthershapetechnologicalpathways.

Materialsdemandandtheroleofthe

net-zerotransition

Materialsdemandoverthenextfewdecadesis

expectedtobedrivenbythreefactors:

—agrowingglobalpopulation,whichisexpected

toincreasefrom7.8billionpeoplein2020to9.6billionin2050,withthelargestgrowthinSub-SaharanAfrica(morethan1.0billion)andIndia(morethan0.3billion)

—continueddevelopmentofthemiddleclass,6

whichaccountsforabout3.2billionpeople

todayandisexpectedtogrowto5.0billionto

5Forexample,globalprimarycoppermines’averageheadgradereducedfromapproximately1.8percentin1970to0.7percentin2021,andglobalprimarysulfidemines’averageheadgradereducedfromapproximately3.3percentin1970to0.4percentin2019.

6Themiddleclassisdefinedasshareoftheglobalpopulationwithanexpenditurerangeof$10to$100perdayat2011purchasing-powerparity.

Thematerialstrilemma

Thematerialstrilemmareferstotheindustry’sneedinthecomingdecadestobalanceprioritiesrelatedtoavailability,affordability,andsustainability.

Availability.Theindustrywillneedtomeetgrowingdemandfromcontinuedpopulationgrowth,middle-classdevelopment,and—increasingly—thedeploymentoflower-carbontechnologiesinsupportofthenet-zerotransition.Atthesametime,theindustrywillneedtoensuresecurityofsupplyinacontextofahighconcentrationofminingandrefiningsupplyinselectcountriesandachangingregulatorylandscapethatisincreasinglyfocusedonregionalization,recentlyexemplifiedthroughpoliciesorlegislativeproposalssuchastheInflationReductionActintheUnitedStatesandtheCriticalRawMaterialsActintheEuropeanUnion.1

Affordability.Theindustrywillalsoneedtomaintaincompetitivepricestoensureaffordabilityofmaterialsandtheproductsandapplicationsthatarebuiltfromthosematerials.Nexttotheparametersthatcanbedirectlyinfluencedbytheindustry—suchasoperationalefficiency—regulatoryincentives,includingtaxes,subsidies,or“hard”targetsontechnologyshifts,canaffecttherelativecompetitivenessoftechnologiesand,consequently,theaffordabilitythresholdacrossmaterials.

Sustainability.Theindustryshouldcomplywithorexceedtheenvironmental,social,andgovernancestandardsandrequirementssetoutbygovernments,customers,andindustryassociationsalike.Althoughtheindustrywillneedtofocusonreducingitsemissionsfootprint,whichcurrentlyaccountsforabout20percentof

globalgreenhouse-gas(GHG)emissions

(approximatelytenmetricgigatonsofCO2

equivalent2),sustainabilityextendswell

beyondGHGemissionstoincludewater

consumption,landuseandbiodiversity,

andworkingandwageconditions,among

others.EarlierresearchbytheMcKinsey

SustainableMaterialsHub3hasshownthat

industryleadershipinsustainabilitycanbe

asignificantsourceofcommercialvalue.

Forexample,playersofferinglower-carbon

steelproductsincertainmarketscan

capture20to30percentpricepremiums,

comparedwithaverageprices.

1

2

3

Formore,see“InflationReductionActof2022,”USInternalRevenueService(IRS),updatedJune1,2023;and“Criticalrawmaterials:EnsuringsecureandsustainablesupplychainsforEU’sgreenanddigitalfuture,”EuropeanCommission,March16,2023.Basedonemissionsfrom2021,primarilydrivenbyironandsteel(about7percent),cement(about5percent),andplastics(about3percent).

“SustainableMaterialsHub,”McKinsey,accessedJune1,2023.

Materialstransition:Implicationsofthenet-zerotransitiononglobalsupplychains4

6.0billionby2050,withthelargestgrowthinChinaandIndia

—thenet-zerotransitionandtheassociated

deploymentoflower-carbontechnologies,includingrenewablepower,energystorage,andhydrogen,amongothers(Exhibit2)

Withthesefactorsinmind,thenet-zerotransitioncoulddirectlypropelmaterialsgrowthintwoways.First,lower-carbontechnologiesareoftenmorematerials-intensivethantheirconventionalcounterpartsattheconstructionphase.Forexample,anoffshore-windturbineisaboutsixtimesmorematerials-intensivethan

agas-basedinstallationonamegawattbasis,whilebatteryelectricvehicles(BEVs)are15to20percentheavierthaninternal-combustionengine(ICE)vehiclesonaverage.Second,lower-carbontechnologiesrequireanewsuiteofmaterialsthathavebeenproducedinonlylimitedquantitiesinthepast,suchaslithium,acriticalbatterymaterial,orrare-earthelementssuchasdysprosiumandneodymium,whichareusedinpermanentmagnets.

Thetransitioncouldalsoindirectlydrivedemandformaterialsusedinprocessingrawmaterials—forexample,sulfuricacid,whichisusedinprocessingofnickelandlithium,amongothers—

Exhibit2

Abatement

contribution,%

Globalgreenhouse-gasabatementpertechnologycomparedto

business-as-usualbaseline,2050,billionmetrictonsCO2eperannum

Businessasusual

emissionsin2050

Cleanelectronsandpowerstorage

Renewables

BESS&LDES1

Nuclear

50

based

Cleanmoleculesandindustrialelectriication

Electriication

Hydrogen

CCUS2

Sustainablefuels

25

technologies

Nature-

NaturalclimatesolutionsCirculartechnology

Alternativeproteins

20

Carbon

removals

Carbonremovals

1

Othersolutions3

5

Note:Figuresmaynotsumto100%,becauseofrounding.

1Batteryenergystoragesystemandlong-durationenergystoragesystem.

2Carboncapture,utilization,andstorage.

3Includesoperationaleiciency,agriculture,andmethanelaring.

Source:McKinseyGlobalEnergyPerspective2022;McKinseySustainabilityInsights

McKinsey&Company

5Materialstransition:Implicationsofthenet-zerotransitiononglobalsupplychains

orinmanufacturingthetechnologyitself,suchashigh-purityquartz,whichisusedasacrucibleinthemanufacturingofsolarpanels.

Themagnitudeatwhichthenet-zerotransitionaffectsglobalmaterialsvaluechainswilldependonthespeedofdecarbonizationaswellastheunderlyingdesignchoicesmadeforeachtechnology(batteries,electricmotors,electrolyzers,andsoon).Forthisreport,weconsideredthreenet-zeroscenariosthatarealsousedinourannualGlobalEnergyPerspective(Exhibit3).7Werecognizethatthesescenarios

mightbedeceleratedforvariousreasonsandthattheworldiscurrentlynotonapathtoachieveexistingcommitments.Atthesametime,wewanttoillustratehowthematerialssupply–demandbalancecouldbeaffectedbydifferentdecarbonizationpathways,sheddinglightontheadditionalcomplicationthatmaterialswillposetothetransition.

Ouranalysisshowsthatfuturegrowthratesformanymaterialsareexpectedtooutpacehistoricalgrowthratesacrossalldemandscenarios,especiallyinabsoluteterms(Exhibit4).8

7

8

Formoreonthesescenarios,seeGlobalEnergyPerspective2022,McKinsey,April2022.

Growthinmaterialsisprimarilydrivenbythegrowthoflarge-volumeapplications,includingBEVs,windturbines,andsolarpanels.Forexample,in2030,morethan50percentofrare-earthelements,55percentofcobalt,and36percentofnickelwillbeconsumedbyBEVsandtheassociatedcharginginfrastructure.

Futuregrowthratesformanymaterialsareexpectedtooutpacehistoricalgrowthratesacrossalldemandscenarios,especiallyinabsoluteterms.

Materialstransition:Implicationsofthenet-zerotransitiononglobalsupplychains6

AchievedCommitmentsscenario,12030

FurtherAcceleration

scenario,22030

CurrentTrajectory

scenario,32030

Currentdemand,

2020

4161

Keymetalsandmineralscontained(notexhaustive)

43

Exhibit3

Demandscenariosandmaterialintensitylevelsfornewtechnologies,GW/Munits

SolarPV?GW?

Materialintensityvsconventionaltechnology?

1.4×

Onshorewind

GW?

Ofshorewind

GW?

415

6.3×

496

2.4×

PassengerBEV?Million(M)units?

42

1.2×

ElectrolyzersGW?

Bauxite

Copper

Cobalt

Dysprosiumandterbium

Graphite

Iridium

Lithium

Manganese

Neodymiumandpraseodymium

Nickel

Tin

1Scenariowherenet-zerocommitmentsareachievedbyleadingcountriesthroughpurposefulpolicies;followerstransitionatslowerpace.2Scenariowheretransitionisfurtheraccelerated,drivenbycountry-speciiccommitments,thoughinancialandtechnologicalrestraintsremain.3Scenariowherecurrenttrajec-toryofrenewables(costdecline)continuesbutcurrentlyactivepoliciesremaininsuicienttocloseremaininggaptotargets.4Solarphotovoltaics.5Batteryelectricvehicle.6Gigawatts;energycapacityadditions.7Gigawatts;energycapacityadditionsbasedonhydrogencapacityadditions.8Mineralsandmetalsonly;

renewablescomparedtocoalandgasinkilograms(kg)perMW,andBEVcomparedtoaninternal-combustionengineinkgperunit.Source:McKinseyMineSpans

McKinsey&Company

7Materialstransition:Implicationsofthenet-zerotransitiononglobalsupplychains

X

Exhibit4

increaseby

MaterialdemandincreaseCurrentTrajectory

(indexedto2010=100)FurtherAcceleration

AchievedCommitments

Neodymiumandpraseodymium

Lithium

Dysprosium

andterbium

201020222030201020222030201020222030

CAGR,%:

X

2010–22

Cobalt

201020222030

2022–30under

FurtherAcceleration

scenario

Nickel

201020222030

16

20

11

14

9

8

9

6

6

6

Aluminum

Copper

Tin

Manganese

Steel

201020222030

201020222030

2010

20222030

201020222030

2010

20222030

2

3

2

4

4

2

3

2

2

1

Source:McKinseyGlobalMaterialsInsights;McKinseyMineSpans

McKinsey&Company

Thegrowthdynamicsvarysignificantlyacrossmaterials,whichcanbeattributedtotheproportionofmaterialsdemanddedicatedtolower-carbontechnologies(Exhibit5).Forinstance,lithium,predominantlyusedinthebatteriesofBEVs,isprojectedtoaccountformorethan80percentoftotallithiumdemandin2030.Asaresult,itsgrowthoverthenextdecadewillbeentirelylinkedtotherateoftransportelectrification.Bycontrast,manganesedemandwillbeprimarilydrivenbythedemandforstainlesssteel,whichinturnisdriven

bytheconsumergoodsandconstructionindustry(accountingfor70percentofdemandin2030).Thus,manganeseisexpectedtoseeamoremodestgrowthrateofapproximately2percentperyearuntil2030.

Supply–demandbalance

Intheory,theincreaseindemandcouldbemetbyscalingsupplybecausenoneofthematerialsrequiredintheproductionoflower-carbontechnologiesisscarce.Infact,resourcesand

Materialstransition:Implicationsofthenet-zerotransitiononglobalsupplychains8

30

70

26

74

Exhibit5

Shareofmaterialsdemandin2030drivenbythenet-zerotransition,1%

92

8

Lithium

81

19

REEs2

73

27

Graphite

56

44

Cobalt

51

49

Iridium

38

62

Nickel

Low-carbontechnologies

10

90

Copper

Aluminum

Manganese

Other

8

92

Steel

1Net-zerotransitionshareincludesdemandfromrenewablepower,energystoragesystems,electricvehicles,andcopper.Includesdemandfromaddedtrans-missionlinesindevelopedcountries.Tinincludesdemandfromsemiconductors.

2Rare-earthelements.

Source:McKinseyGlobalMaterialsInsights;McKinseyMineSpans

McKinsey&Company

reservesforseveralmetalsandmaterialsareattheirhighestlevelssince2000(Exhibit6).However,becauseittypicallytakesfiveto15years—dependingonthematerial,projectcharacteristics,andregulatoryenvironment—todevelopnewdepositsfromexplorationtominingoperations,temporarymaterialsshortagescouldoccurifdemandgrowthoutpacesinitialindustryexpectations.

Forthisreport,wedevelopedtwosupplyscenariosbasedonourresearchonthematurityandlikelihoodofindividualprojectsforeachmaterial.TheresearchisanchoredinourMineSpansdatabase,whichcontainsmorethan10,000operatingminesandminingprojectsacrossmorethan130countries9:

—Base-casescenario.Thisincludesalloperating

mines(correctedfordepletionwhererelevant)andprojectscurrentlyunderconstruction,aswellasprojectsforwhichafeasibilitystudyhasbeenconductedandfinancingsecuredandprojectsforwhichafeasibilitystudyiscurrentlybeingconducted.

—High-casescenario.Thisincludesprojectsfor

whichaprefeasibilitystudyhasbeeninitiated.Projectsthathavebeenannouncedbutsofarhavenotinitiatedanyprefeasibilitystudyarenotincludedintheforecasts.

9Recycledmaterialshavebeenconsistentlyincludedinbothsupplyscenarios,basedonassumptionsonaverageend-productlifetimesand

collectionandrecoveryrates.Conversely,potentialchangesinproductionquota,suchasthoseonrare-earthelementsinChina,havenotbeenconsideredinanyofthescenarios.

9

Materialstransition:Implicationsofthenet-zerotransitiononglobalsupplychains

80

60

40

20

Exhibit6

Materialsresourcesandreserves,1millionmetrictons

Lithium

20002005201020152020

Nickel3

300

250

200

150

100

50

20002005201020152020

ResourcesReserves

Cobalt2

25

20

15

10

5

20002005201020152020

Copper

5,000

4,000

3,000

2,000

1,000

20002005201020152020

1Resourcesareaconcentrationofnaturallyoccurringsolid,liquid,orgaseousmaterialinorontheEarth’scrust,whilereservesarewhatcouldbeeconomicallyextractedorproducedatthetimeofdetermination.

2Mostrecentprojectshavebeenhigh-pressureacidleach(HPALs).

3Resourcesof>1%Nifor2000–20and>0.5%Nifor2021–23.

Source:UnitedStatesGeologicalSurvey;McKinseyGlobalMaterialInsights;McKinseyMineSpans

McKinsey&Company

Materialstransition:Implicationsofthenet-zerotransitiononglobalsupplychains10

Toputthisintoperspective,thereareapproximately500cobalt,copper,lithium,andnickelminesoperatingtoday.Thebase-casescenariowouldrequiretheadditionof196mines(anincreaseofapproximately40percent)by2030,whilethehigh-casescenariowouldrequiretheadditionof382mines(anincreaseofapproximately80percent).

Bothscenarioscarryinherentuncertainty,giventheconditionsthatneedtobefulfilledforaprojecttocomeonlineasplanned,includingtimelydeliveryofpermits(whichnotablyrequiresacompliantenvironmentalimpactassessmentformostjurisdictions),availabilityofskilledlabor,closingofprojectfinancing,timelydeliveryofequipment,availabilityoffreshwater(notably

intheLithiumTriangleinSouthAmerica)andprocessingmaterials(suchassulfur),timelydeploymen

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論