信號與系統(tǒng)復習版_第1頁
信號與系統(tǒng)復習版_第2頁
信號與系統(tǒng)復習版_第3頁
信號與系統(tǒng)復習版_第4頁
信號與系統(tǒng)復習版_第5頁
已閱讀5頁,還剩32頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

§2.7

卷積的性質*.移不變if

f1

*

f2

=

f3則:f1

(t

-t0

)*

f2

=f3

(t

-t0

)f2

(t

-

t0

)

*

f1

=

f3

(t

-

t0

)性質的應用參考P84面2-14題p84.2-14f

(t)011tf

(t)011t*=011t2s(t)1.t<0011ts(t)

=

0t

-12.0<t<10t1t

-1ts

(

t

)

=

1

d

t

=

t03.1<t<2tt

-1

11s(t)

=

1dt

=

2

-

tt

-14.t>2t

-1t1s(t)

=

0若f

(t)=u(t

-1)-u(t

-2),求f

(t)*

f

(t)=s(t)f

(t)1

21f

(t)1

21*=123

4s(t)若f1

(t)*

f

2(t)=s(t)則f1

(t

-t1

)*

f

2

(t

-t2

)=s(t

-t1

-t2

)4

-t

3

<

t

<

4s(t)

=

t

-

2 2

<

t

<

30

t

2

t

?

4差別:第二小題就是把第一小題的卷積結果向右平移兩個單位。利用位移特性及u(t)*

u(t)=

r(t)

,計算y(t)=f(t)

*

h(t)。解:y(t)=f(t)*

h(t)=(u(t)-u(t-1))*(u(t)-u(t-2))=u(t)

*

u(t)

-

u(t-1)

*

u(t)

-

u(t)

*

u(t-2)

-

u(t-1)

*

u(t-2)=

r(t)

-

r(t-1)

r(t

-2)

+

r(t-3)f

(t)t101h(t)201y(t)t011

23t3

-

t*=t一.卷積代數(shù)2.distributi

ve

lawf1

*[

f2

+

f3

]

=

f1

*

f2

+

f1

*

f3f1f2(t)f3(t)f1

*

f

2

+

f1

*

f31.commutative

lawf1

*

f2

=

f2

*

f1h(t)f

*

hh(t

)h

*

ff(t)f

(t)f2(t)f3(t)f3(t)f2(t)3.associativ

e

law

[

f1

*

f2

]*

f3

=

f1

*[

f2

*

f3

]f1f1f1

*[

f

2

*

f

3

]f1

*[

f

3

*

f

2

]dt

dt

dt21

2

2

1*

f

=

f

*]

=

df

1

dfd

[

f

*

f2.兩函數(shù)相卷積后的積分等于兩函數(shù)之一的積分與另一函數(shù)相卷積.f

2

(

t

)

d

tt-

¥t

[

f

1

*

f

2

]

dt

=

f

1

*-

¥dtdtdft12d

2

f-¥t

t*

f

2

(t)dt-¥

-¥= 1

*

f

(t)dt

=2f1

*

f

23.推廣二.卷積的微分和積分1.兩函數(shù)相卷積后的導數(shù)等于兩函數(shù)之一的導數(shù)與另一函數(shù)相卷積.則

:

f

(m

)

(

t

)

*

f

(n

)

(

t

)

=

s

(m

+

n

)

(

t

)1

2三.奇異信號的卷積特性1

.

f

(

t

)

*

d

(

t

)

=

f

(

t

)f

(

t

)

*

d

(

t

-

t

0

)

=f

(

t

-

t

0

)f

(

t

-

t

0

-

t

1

)f

(

t

-

t

1

)

*

d

(

t

-

t

0

)

=.若:

f1

*

f

2

=

s(t)(d(t)及其各階導數(shù)卷積)*

d

(

t

)2 .

d

(

t

)3

.

f

(

t

)=

d

(

t

)=

f

'

(

t

)t(

t

)

*

u

(

t

)

=5.推廣:(

k

)(

k

)f

(

t

)

*

df

(

k

)

(

t

-

t

)0(

t

)

=

f

(

t

))

=f

(

t

)

*

d

(

k

)

(

t

-

t0f

(t

)

fi

相當于微分運算f

(

t

)

d

tpf

(

t

)

=4

.

f*

d

'

(

t

)d

'

(

t

)

*1pf

(

t

)

=

u

(

t

)

*

f

(

t

)-

¥相當于積分運算f

(t

)

=f

(t

)

*

d

'

(t

)

*

u

(t

)

=f

'

(t

)

*

u

(t

)''

(t

)

*

tu

(t

)f

(t

)

=

f

(t

)

*

d

''

(t

)

*

tu

(t

)

=

f四.例題:1.P85.2-19(a)1f1(t)123tf2(t)-22t解:f1

*

f

2

=

f1

(t)[d(t

-t

+

2)

+

d(t

-t

-

2)]dt¥-¥=

f1

(t

+

2)

+

f1

(t

-

2)13

4

5-5-3

-1f1*f22用P67-68圖2-17示例解如下例題:2af1(t)*t1f2(t)bt2'1*

f

=f2[

Ad

(t

)

-

Ad

(t

-

1)]

*

f1f

'

(t)123*2.計算f1

*

f

2解:f1(t)

=

Ad(t)

-

Ad(t

-1)=

Ad

(t

)

*

f

2

-

Ad

(t

-

1)

*

f

2=

Af

2

(t

)

-

Af

2

(t

-

1)'f1

(t

)

*

f

2

(t

)

=tab0

t

122ab1

<

t

<

22ab

(1

-

t

)2

<

t

<

321f

*

f

=tdtabt02ab

abt

11

0

2

dt

+

2

tdt12

0

2

(1

-

t

)dt

+

2

tdt

+

2

dtab

ab

2

abt

1123'f1

*

f22abab=24tab2

4ab

abt

-1

t

<

24ab

(3

-

t

2

+

2t)2

t

33.計算下列函數(shù)的卷積結果,并化出波形....2

3

5*tf1p85.2

-19(

f

)0

t

11

2f1

*

f

23tf2

=

sin

ptu(t)43abab4¥n

=

0=

[

u

(

t

-

3

n

)

-

u

(

t

-

3

n

-

2

)]解:

f

1f

2

=

sin

ptu(t

)¥1n

=

0f

'

(

t

)

=

[d

(

t

-

3

n

)

-

d

(

t

-

3

n

-

2

)]1(

1

-

cos

p

t

)

u

(

t

)pf

2

(

t

)

d

t

=t0f

(

t

)

d

t2'1t-

¥(

t

)

*r

(

t

)

=

f23'f1

(t)5

*1

24¥¥=1n=0n=0t)[u(t)

-

u(t

-

2)]

*=

1

(1-

cos

t)u(t)r(t)d(t

-

3n)(1-

cosppp

*[d(t

-

3n)

-d(t

-

3n

-

2)]p4.P85.2-19(b)2-¥f1

*

f

=-(t+1)解:方法一:t<0時:t+11·e

dt=e

-e

=e0

-0

=1-(t-t+1)-¥t

+11t>0時:-¥1e-(t

-t+1)

dt

+f1

*

f2

=2e-(t

-t+1)

dt

=

2

-

e-tf111*-(t

+1)f

2

=

e u(t

+1)-1方法二:用微分積分性質f1

(t

)tt-¥

-¥

1

dt

=

d

(t

-1)dt

=

u(t

-1)

?dtdf

(t)dfdtdftt-¥f1

=

1

dtf1

*

f2

=

1

*

f2

(t)dt需要t

fi

-¥條件為:lim

f1

(t)=0-(t

+1)s

=

f1

*

f

2

=

[1

+

u(t

-1)]

*[e

u(t

+1)]注意積分常數(shù)的問題。=

e

u(t

+1)-¥

dtf1

=

1

+

u(t

-1)f

2-(t

+1)dt-¥

-¥du

(t

-

1)=

1*

e

-(

t

+1)

u

(t

+

1)

+

u

(t

-1)

*

e

-(

t

+1)

u

(t

+

1)t*

e

-(t

+1)

u

(t

+

1)dt¥=

e

-(t

+1)

u

(t

+

1)dt

+¥

t=

e

-(t

+1)

dt

+

d

(t

-1)

*

e

-(t

+1)

dtu

(t

+

1)-1

-1t

-1=

1

+

e

-(t

+1)

dt

=

1

+

(1

-

e

-t

)u

(t

)-1注意

:

1

*

e

-(

t

+1)

u

(t

+

1)

?

e

-(

t

+1)

u

(t

+

1)5.圖示a線性時不變系統(tǒng)是由三個子系統(tǒng)組成,已知總系統(tǒng)的h(t)和h1(t),h2

(t)分別為b,c,d所示,求子系統(tǒng)的沖激響應h3

(t).h1(t)h3

(t)h2

(t)d(t)h(t)(a)24

5h(t)0

1(b)1h1

(t)40(c)h2

(t)120

1(d)解:由圖(a)可知,系統(tǒng)的總響應為h(t)

=

h1

(t)

*[h2

(t)

+

h3

(t)]因h(t)為一梯形波,而h1

(t)為一炬形波\h2(t)+h3

(t)也應為矩形波21h2

(t)

+

h3(t)

=

2[u(t)

-

u(t

-1)]h3

(t)

=

2[u(t)

-

u(t

-1)]

-

h2

(t)=

2[u(t)

-

u(t

-1)]

-{t[u(t)

-

u(t

-1)]

+

(t

-1)[u(t

-1)

-

u(t

-

2)]}=

(2

-

t)[u(t)

-

u(t

-1)]

-

(t

-1)[u(t

-1)

-

u(t

-

2)]3h

(t)1122此題的關鍵是利用了兩個不同寬度的矩形波的卷積結果是梯形波。6.線性系統(tǒng)如圖所示,它由幾個子系統(tǒng)組成,已知部分子系統(tǒng)的沖激響應為h1

(t

)

=

d

(t

-

1),

h2

(t

)

=

-2d

(t

-

1)h2(t)h1(t)h1(t)h3(t)rzs(t)

12t若整個系統(tǒng)對sintu(t)的零狀態(tài)響應如(b)所示,求子系統(tǒng)的沖激響應h3(t)。rzs(t)1圖b0h(t)

=

d

(t)

+

h1

(t)

*h1

(t)

+

h2

(t)

+

h3

(t)=

d(t)

+

d(t

-1)

*d(t

-1)

-

2d(t

-1)

+

h3

(t)=

d

(t)

-

2d

(t

-1)

+

d

(t

-

2)

+

h3

(t)求h3

(t)?r(t)

=

sin

tu(t)

*h(t)2dt

2d

2

r(t)dt

2dtdtd

2

sin

tu(t)fisin

tu(t)

fi

r(t)d

2

sin

tu(t)

d

sin

tu(t)

=

cos

tu(t)

+

d(t)

sin(

t)r(t)r

''

(t)=

d(t)

-

sin(

t)u(t)r‘

(t)012()

(

)(2

)(1)1

+

2d

2

r*

h

(

t

)d

2

r d

2

sin

tu

(

t

)d

2

t

=

d

2

tr

(

t

)

=

sin(

t

)u

(

t

)

*

h

(

t

)\

h

(

t

)

=

d

(

t

)

+

r

(

t

)

-

2d

(

t

-

1)

+

d

(

t

-

2

)d

(

t

)

*

h

(

t

)

=

h

(

t

)

=

r

(

t

)

+d

2

t=

[d

(

t

)

-

sin

tu

(

t

)]

*

h

(

t

)\

h3

(t)

=

r(t)點評:本題是求反卷積的問題。利用了sintu(t)兩次求導后出現(xiàn)沖激函數(shù)

和自身,具有這一特點的函數(shù),求反卷積用本例的方法比較簡單。例8.某LTI系統(tǒng),當輸入f(t)

=e-tu(t)時,其零狀態(tài)響應為-(t

+T

)

-(t

-T

)yzs

(t)

=[1

-

e

]u(t

+

T

)

-[1

-

e

]u(t

-T

)式中,T為常數(shù)。試求該系統(tǒng)的沖激響應h(t)。解:由于yzs

(t)=f

(t)*h(t),利用卷積的性質,有y‘zs

(t)=f

’(t)*h(t)f

'(t

)=d(t

)-e-tu

(t

)帶入上式,有y'zs(t)

=[d(t)

-

e-tu(t)]

*h(t)

=

h(t)

-[e-tu(t)]

*h(t)而[e-tu(t)]

*h(t)

=

y

(t),故zszs'zs(t)

=

u(t

+

T

)

-

u(t

-T

)h(t)

=

y

(t)

+

y對yzs

(t)求導時,要利用f(t)d(t-t0

)=f

(t0

)d(t

-t0

)的性質,f

(t)tth(-t)f

(t)h(t

-

t)較麻煩,利用移不變特性。計算f

(t)*

h(t),f

(t)=u(t),h(t)=e-tu(t)f

(t)h(t)h(t)0t

?

0f

(t)

*

h(t)

=t-tte

dt

=

1

-

e-(t

-t)1

2

1

22.

f

*

f

的寬度為f

f

的寬度之和1

2

1

27.若

f

(t)和

f

(t)為有限寬度的脈沖,

證明1

21.

f

*

f

的面積為f

f

的面積之積ff

f2[[121dt]dt(t)f

(t

-t)

¥-¥

-¥-¥*

]dt

=證明:1;¥ff¥-¥¥¥-¥

-¥]dt

=12[

f

1

*

f(t

-t)dtdt2(t)令t

-t

=x,dt

=dx對上式交換積分次序得fffff

f

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論