![2023屆北京一五六中學數(shù)學高一下期末預測試題含解析_第1頁](http://file4.renrendoc.com/view/d0942de20aa05d2f2b83f4a9886e287b/d0942de20aa05d2f2b83f4a9886e287b1.gif)
![2023屆北京一五六中學數(shù)學高一下期末預測試題含解析_第2頁](http://file4.renrendoc.com/view/d0942de20aa05d2f2b83f4a9886e287b/d0942de20aa05d2f2b83f4a9886e287b2.gif)
![2023屆北京一五六中學數(shù)學高一下期末預測試題含解析_第3頁](http://file4.renrendoc.com/view/d0942de20aa05d2f2b83f4a9886e287b/d0942de20aa05d2f2b83f4a9886e287b3.gif)
![2023屆北京一五六中學數(shù)學高一下期末預測試題含解析_第4頁](http://file4.renrendoc.com/view/d0942de20aa05d2f2b83f4a9886e287b/d0942de20aa05d2f2b83f4a9886e287b4.gif)
![2023屆北京一五六中學數(shù)學高一下期末預測試題含解析_第5頁](http://file4.renrendoc.com/view/d0942de20aa05d2f2b83f4a9886e287b/d0942de20aa05d2f2b83f4a9886e287b5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,內(nèi)角的對邊分別為,且,,若,則()A.2 B.3 C.4 D.2.已知函數(shù)f(x)=2x+log2x,且實數(shù)a>b>c>0,滿足A.x0<a B.x0>a3.已知圓,直線,點在直線上.若存在圓上的點,使得(為坐標原點),則的取值范圍是A. B. C. D.4.函數(shù),,若對任意,存在,使得成立,則實數(shù)m的取值范圍是()A. B. C. D.5.點到直線(R)的距離的最大值為A. B. C.2 D.6.若,則()A. B. C. D.7.執(zhí)行如圖的程序框圖,則輸出的λ是()A.-2 B.-4 C.0 D.-2或08.某空間幾何體的三視圖如圖所示,則這個幾何體的體積等于()A.1 B.2 C.4 D.69.圓與圓的位置關(guān)系是()A.相離 B.相交 C.相切 D.內(nèi)含10.若一元二次不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.的值為________.12.已知函數(shù),該函數(shù)零點的個數(shù)為_____________13.在三棱錐中,,,,作交于,則與平面所成角的正弦值是________.14.已知向量,若,則________.15.若,且,則=_______.16.設變量滿足條件,則的最小值為___________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知、、是同一平面內(nèi)的三個向量,其中=(1,2),=(﹣2,3),=(﹣2,m)(1)若⊥(+),求||;(2)若k+與2﹣共線,求k的值.18.如圖,菱形ABCD與正三角形BCE的邊長均為2,且平面ABCD⊥平面BCE,平面ABCD,.(I)求證:平面ABCD;(II)求證:平面ACF⊥平面BDF.19.數(shù)列中,,(為常數(shù),1,2,3,…),且.(1)求c的值;(2)求證:①;②;(3)比較++…+與的大小,并加以證明.20.某體育老師隨機調(diào)查了100名同學,詢問他們最喜歡的球類運動,統(tǒng)計數(shù)據(jù)如表所示.已知最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和.最喜歡的球類運動足球籃球排球乒乓球羽毛球網(wǎng)球人數(shù)a201015b5(1)求的值;(2)將足球、籃球、排球統(tǒng)稱為“大球”,將乒乓球、羽毛球、網(wǎng)球統(tǒng)稱為“小球”.現(xiàn)按照喜歡大、小球的人數(shù)用分層抽樣的方式從調(diào)查的同學中抽取5人,再從這5人中任選2人,求這2人中至少有一人喜歡小球的概率.21.已知向量是夾角為的單位向量,,(1)求;(2)當m為何值時,與平行?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
利用正弦定理化簡,由此求得的值.利用三角形內(nèi)角和定理和兩角和與差的正弦公式化簡,由此求得的值,進而求得的值.【詳解】利用正弦定理化簡得,所以為銳角,且.由于,所以由得,化簡得.若,則,故.若,則,由余弦定理得,解得.綜上所述,,故選B.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查三角形內(nèi)角和定理,考查兩角和與差的正弦公式,屬于中檔題.2、D【解析】
由函數(shù)的單調(diào)性可得:當x0<c時,函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)【詳解】因為函數(shù)f(x)=2則函數(shù)y=f(x)在(0,+∞)為增函數(shù),又實數(shù)a>b>c>0,滿足f(a)f(b)f(c)<0,則f(a),f(b),f(c)為負數(shù)的個數(shù)為奇數(shù),對于選項A,B,C選項可能成立,對于選項D,當x0函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)<0,故選項D不可能成立,故選:D.【點睛】本題考查了函數(shù)的單調(diào)性,屬于中檔題.3、B【解析】
根據(jù)條件若存在圓C上的點Q,使得為坐標原點),等價即可,求出不等式的解集即可得到的范圍【詳解】圓O外有一點P,圓上有一動點Q,在PQ與圓相切時取得最大值.
如果OP變長,那么可以獲得的最大值將變小.可以得知,當,且PQ與圓相切時,,
而當時,Q在圓上任意移動,存在恒成立.
因此滿足,就能保證一定存在點Q,使得,否則,這樣的點Q是不存在的,
點在直線上,,即
,
,
計算得出,,
的取值范圍是,
故選B.考點:正弦定理、直線與圓的位置關(guān)系.4、D【解析】,當時,對于∵對任意,存在,使得成立,,解得實數(shù)的取值范圍是.
故選D.【點睛】本題考查三角函數(shù)恒等變換,其中解題時問題轉(zhuǎn)化為求三角函數(shù)的值域并利用集合關(guān)系是解決問題的關(guān)鍵,5、A【解析】
把直線方程化為,得到直線恒過定點,由此可得點P到直線的距離的最大值就是點P到定點的距離,得到答案.【詳解】由題意,直線可化為,令,解得,即直線恒過定點,則點P到直線的距離的最大值就是點P到定點的距離為:,故選A.【點睛】本題主要考查了直線方程的應用,其中解答中把直線方程化為,得出直線恒過定點是解答本題的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及推理與運算能力,屬于基礎(chǔ)題.6、D【解析】
將指數(shù)形式化為對數(shù)形式可得,再利用換底公式即可.【詳解】解:因為,所以,故選:D.【點睛】本題考查了指數(shù)與對數(shù)的互化,重點考查了換底公式,屬基礎(chǔ)題.7、A【解析】
根據(jù)框圖有,由判斷條件即即可求出的值.【詳解】由有.根據(jù)輸出的條件是,即.所以,解得:.故選:A【點睛】本題考查程序框圖和向量的加法以及數(shù)量積以及性質(zhì),屬于中檔題.8、B【解析】
先由三視圖還原幾何體,再由題中數(shù)據(jù),結(jié)合棱錐的體積公式,即可得出結(jié)果.【詳解】由三視圖可得,該幾何體為底面是直角梯形,側(cè)棱垂直于底面的四棱錐,如圖所示:由題意可得其體積為:故選B【點睛】本題主要考查由幾何體的三視圖求幾何體的體積,熟記棱錐的結(jié)構(gòu)特征以及體積公式即可,屬于??碱}型.9、B【解析】
計算圓心距,判斷與半徑和差的關(guān)系得到位置關(guān)系.【詳解】圓心距相交故答案選B【點睛】本題考查了兩圓的位置關(guān)系,判斷圓心距與半徑和差的關(guān)系是解題的關(guān)鍵.10、A【解析】
該不等式為一元二次不等式,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,從而可得關(guān)于參數(shù)的不等式組,解之可得結(jié)果.【詳解】不等式為一元二次不等式,故,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,則,解不等式組,得.故本題正確答案為A.【點睛】本題考查一元二次不等式恒成立問題,考查一元二次函數(shù)的圖象與性質(zhì),注意數(shù)形結(jié)合的運用,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式,結(jié)合根式運算,化簡求得表達式的值.【詳解】依題意,由于,所以故答案為:【點睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式、二倍角公式,考查根式運算,屬于基礎(chǔ)題.12、3【解析】
令,可得或;當時,可解得為函數(shù)一個零點;當時,可知,根據(jù)的范圍可求得零點;綜合兩種情況可得零點總個數(shù).【詳解】令,可得:或當時,或(舍)為函數(shù)的一個零點當時,,,為函數(shù)的零點綜上所述,該函數(shù)的零點個數(shù)為:個本題正確結(jié)果:【點睛】本題考查函數(shù)零點個數(shù)的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為方程根的個數(shù)的求解,涉及到余弦函數(shù)零點的求解.13、【解析】
取中點,中點,易得面,再求出到平面的距離,進而求解再得出到平面的距離.從而算得與平面所成角的正弦值即可.【詳解】如圖,取中點,中點,連接.因為,,所以.因為,,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距離.到面的距離.又因為,所以,所以,所以,故到面的距離.故與平面所成角的正弦值是故答案為:【點睛】本題主要考查了空間中線面垂直的性質(zhì)與運用,同時也考查了余弦定理在三角形中求線段與角度正余弦值的方法,需要根據(jù)題意找到點到面的距離求解,再求出線面的夾角.屬于難題.14、【解析】
直接利用向量平行性質(zhì)得到答案.【詳解】,若故答案為【點睛】本題考查了向量平行的性質(zhì),屬于簡單題.15、【解析】
由的值及,可得的值,計算可得的值.【詳解】解:由,且,由,可得,故,故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,熟練掌握其基本關(guān)系是解題的關(guān)鍵.16、-1【解析】
根據(jù)線性規(guī)劃的基本方法求解即可.【詳解】畫出可行域有:因為.根據(jù)當直線縱截距最大時,取得最小值.由圖易得在處取得最小值.故答案為:【點睛】本題主要考查了線性規(guī)劃的基本運用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)-2【解析】
(1)根據(jù)向量的坐標的運算法則和向量垂直的條件,以及模的定義即可求出;(2)根據(jù)向量共線的條件即可求出.【詳解】(1)∵,∴,,∴m=﹣1∴∴=(2)由已知:,,因為,所以:k﹣2=4(2k+3),∴k=﹣2【點睛】本題考查了向量的坐標運算以及向量的垂直和平行,屬于基礎(chǔ)題.18、(Ⅰ)見解析;(Ⅱ)見解析.【解析】(1)添加輔助線,通過證明線線平行來證明線面平行.(2)通過證明線面垂直面,來證明面面.(Ⅰ)證明:如圖,過點作于,連接,∴.∵平面⊥平面,平面,平面平面,∴⊥平面,又∵⊥平面,,∴,.∴四邊形為平行四邊形.∴.∵平面,平面,∴平面.(Ⅱ)證明:面,,又四邊形是菱形,,又,面,又面,從而面面.點晴:本題考查的是空間線面的平行和垂直關(guān)系.第一問要考查的是線面平行,通過先證明,得四邊形為平行四邊形.證得,可得平面,這里對于線面平行的條件平面,平面要寫全;第二問中通過先證明面,再結(jié)合面,從而面面.19、(1);(2)①見證明;②見證明;(3)++…+,證明見解析【解析】
(1)將代入,結(jié)合可求出的值;(2)可知,,即可證明結(jié)論;(3)由題意可得,從而可得到,求和可得,然后作差,通過討論可比較二者大小.【詳解】(1)由題意:,.而,得,即,解得或,因為,所以滿足題意.(2)因為,所以.則.,因為,,所以,所以.(3)由,可得,從而,所以.因為,所以,所以.,,,,當n=1時,,故;當n=2時,,;當n≥3時,,則,.【點睛】本題主要考查了數(shù)列的遞推關(guān)系式和數(shù)列的求和,考查了不等式的證明,考查了學生的邏輯推理能力與計算能力,屬于難題.20、(1);(2)【解析】
(1)根據(jù)最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和,以及總?cè)藬?shù)列方程組求解;(2)利用分層抽樣,抽取的5人中,3人喜歡大球,2人喜歡小球,根據(jù)古典概型求解概率.【詳解】(1)由題最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和,所以,解得:,所以;(2)由題可得:喜歡大球的60人,喜歡小球的40人,按照分層抽樣抽取5人,其
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度離婚后財產(chǎn)分割協(xié)議書范本下載
- 現(xiàn)代辦公室設計如何減輕員工焦慮和壓力?-以辦公環(huán)境為視角的病例分析
- 2025年度知識產(chǎn)權(quán)質(zhì)押貸款合同起草與執(zhí)行細則
- 溝通技巧對提升職場人際關(guān)系及心理調(diào)適的影響
- 2025年度綠色建材采購合作合同
- 現(xiàn)代商務演講的視覺元素運用
- 2025年度建筑節(jié)能改造工程承包合同范本-@-1
- 2025年度攪拌車租賃與運輸管理綜合合同
- 甲狀腺疾病的中草藥治療方案
- 社區(qū)健康家庭事跡簡介(5篇)
- GB/T 16475-1996變形鋁及鋁合金狀態(tài)代號
- 無紙化會議系統(tǒng)解決方案
- 上海鐵路局勞動安全“八防”考試題庫(含答案)
- 《愿望的實現(xiàn)》教學設計
- 效率提升和品質(zhì)改善方案
- 義務教育學科作業(yè)設計與管理指南
- 物業(yè)客服培訓PPT幻燈片課件(PPT 61頁)
- 《汽車發(fā)展史》PPT課件(PPT 75頁)
- 工地試驗室儀器期間核查作業(yè)指導書
- 反詐騙防詐騙主題教育宣傳圖文PPT教學課件
- 淺談化工生產(chǎn)裝置大修安全環(huán)保管理
評論
0/150
提交評論