版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.向量,,且,則等于()A. B. C.2 D.102.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬.如圖,若四棱錐P﹣ABCD為陽(yáng)馬,側(cè)棱PA⊥底面ABCD,PA=AB=AD,E為棱PA的中點(diǎn),則異面直線AB與CE所成角的正弦值為()A. B. C. D.3.已知數(shù)列是各項(xiàng)均為正數(shù)且公比不等于1的等比數(shù)列,對(duì)于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”,現(xiàn)有定義在上的如下函數(shù):①,②,③;④,則為“保比差數(shù)列函數(shù)”的所有序號(hào)為()A.①② B.①②④ C.③④ D.①②③④4.圓的半徑為()A.1 B.2 C.3 D.45.得到函數(shù)的圖象,只需將的圖象()A.向左移動(dòng) B.向右移動(dòng) C.向左移動(dòng) D.向右移動(dòng)6.在中,角,,所對(duì)的邊分別為,,,若,,則等于()A.1 B.2 C. D.47.設(shè)等比數(shù)列的公比,前n項(xiàng)和為,則()A.2 B.4 C. D.8.已知數(shù)列的前項(xiàng)和為,且,則()A. B. C. D.9.若a=(3,2),bA.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4)10.如圖所示是一樣本的頻率分布直方圖,則由圖形中的數(shù)據(jù),可以估計(jì)眾數(shù)與中位數(shù)分別是()A.12.5;12.5 B.13;13 C.13;12.5 D.12.5;13二、填空題:本大題共6小題,每小題5分,共30分。11.已知四棱錐的底面是邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)均為.若圓柱的一個(gè)底面的圓周經(jīng)過(guò)四棱錐四條側(cè)棱的中點(diǎn),另一個(gè)底面的圓心為四棱錐底面的中心,則該圓柱的體積為_(kāi)_________.12.己知為數(shù)列的前項(xiàng)和,且,則_____.13.已知數(shù)列滿足:其中,若,則的取值范圍是______.14.已知點(diǎn)P是矩形ABCD邊上的一動(dòng)點(diǎn),,,則的取值范圍是________.15.已知數(shù)列是等差數(shù)列,若,,則公差________.16.如圖為函數(shù)(,,,)的部分圖像,則函數(shù)解析式為_(kāi)_______三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.某算法框圖如圖所示.(1)求函數(shù)的解析式及的值;(2)若在區(qū)間內(nèi)隨機(jī)輸入一個(gè)值,求輸出的值小于0的概率.18.已知(Ⅰ)求的值;(Ⅱ)若,求的值.19.在等差數(shù)列{an}中,2a9=a12+13,a3=7,其前n項(xiàng)和為Sn.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{}的前n項(xiàng)和Tn,并證明Tn<.20.在中,分別是角的對(duì)邊.(1)求角的值;(2)若,且為銳角三角形,求的范圍.21.已知.(1)若三點(diǎn)共線,求的關(guān)系;(2)若,求點(diǎn)的坐標(biāo).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
先由數(shù)量積為,得出,求出的坐標(biāo),利用模長(zhǎng)的坐標(biāo)公式求解即可.【詳解】由題意可得,則則故選:B【點(diǎn)睛】本題主要考查了向量模的坐標(biāo)表示以及向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.2、B【解析】
由異面直線所成角的定義及求法,得到為所求,連接,由為直角三角形,即可求解.【詳解】在四棱錐中,,可得即為異面直線與所成角,連接,則為直角三角形,不妨設(shè),則,所以,故選B.【點(diǎn)睛】本題主要考查了異面直線所成角的作法及求法,其中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、B【解析】
設(shè)數(shù)列{an}的公比為q(q≠1),利用保比差數(shù)列函數(shù)的定義,逐項(xiàng)驗(yàn)證數(shù)列{lnf(an)}為等差數(shù)列,即可得到結(jié)論.【詳解】設(shè)數(shù)列{an}的公比為q(q≠1)①由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;②由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;③由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常數(shù),∴數(shù)列{lnf(an)}不為等差數(shù)列,不滿足題意;④由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;綜上,為“保比差數(shù)列函數(shù)”的所有序號(hào)為①②④故選:B.【點(diǎn)睛】本題考查新定義,考查對(duì)數(shù)的運(yùn)算性質(zhì),考查等差數(shù)列的判定,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.4、A【解析】
將圓的一般方程化為標(biāo)準(zhǔn)方程,確定所求.【詳解】因?yàn)閳A,所以,所以,故選A.【點(diǎn)睛】本題考查圓的標(biāo)準(zhǔn)方程與一般方程互化,圓的標(biāo)準(zhǔn)方程通過(guò)展開(kāi)化為一般方程,圓的一般方程通過(guò)配方化為標(biāo)準(zhǔn)方程,屬于簡(jiǎn)單題.5、B【解析】
直接利用三角函數(shù)圖象的平移變換法則,對(duì)選項(xiàng)中的變換逐一判斷即可.【詳解】函數(shù)的圖象,向左平移個(gè)單位,得,錯(cuò);函數(shù)的圖象,向右平移個(gè)單位,得,對(duì).函數(shù)的圖象,向左平移個(gè)單位,得,錯(cuò);函數(shù)的圖象,向右平移個(gè)單位,得,錯(cuò),故選B.【點(diǎn)睛】本題考查了三角函數(shù)的圖象,重點(diǎn)考查學(xué)生對(duì)三角函數(shù)圖象變換規(guī)律的理解與掌握,能否正確處理先周期變換后相位變換這種情況下圖象的平移問(wèn)題,反映學(xué)生對(duì)所學(xué)知識(shí)理解的深度.6、D【解析】
直接利用正弦定理得到,帶入化簡(jiǎn)得到答案.【詳解】正弦定理:即:故選D【點(diǎn)睛】本題考查了正弦定理,意在考查學(xué)生的計(jì)算能力.7、D【解析】
設(shè)首項(xiàng)為,利用等比數(shù)列的求和公式與通項(xiàng)公式求解即可.【詳解】設(shè)首項(xiàng)為,因?yàn)榈缺葦?shù)列的公比,所以,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的求和公式與通項(xiàng)公式,熟練掌握基本公式是解題的關(guān)鍵,屬于基礎(chǔ)題.8、D【解析】
通過(guò)和關(guān)系,計(jì)算通項(xiàng)公式,再計(jì)算,代入數(shù)據(jù)得到答案.【詳解】,取,兩式相減得:是首項(xiàng)為4,公比為2的等比數(shù)列.故答案選D【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式,前N項(xiàng)和,意在考查學(xué)生的計(jì)算能力.9、D【解析】
直接利用向量的坐標(biāo)運(yùn)算法則化簡(jiǎn)求解即可.【詳解】解:向量a=(3,2),b則向量2b-故選D.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,考查計(jì)算能力.10、D【解析】分析:根據(jù)頻率分布直方圖中眾數(shù)與中位數(shù)的定義和計(jì)算方法,即可求解頻率分布直方圖的眾數(shù)與中位數(shù)的值.詳解:由題意,頻率分布直方圖中最高矩形的底邊的中點(diǎn)的橫坐標(biāo)為數(shù)據(jù)的眾數(shù),所以中間一個(gè)矩形最該,故數(shù)據(jù)的眾數(shù)為,而中位數(shù)是把頻率分布直方圖分成兩個(gè)面積相等部分的平行于軸的直線橫坐標(biāo),第一個(gè)矩形的面積為,第二個(gè)矩形的面積為,故將第二個(gè)矩形分成即可,所以中位數(shù)是,故選D.點(diǎn)睛:本題主要考查了頻率分布直方圖的中位數(shù)與眾數(shù)的求解,其中頻率分布直方圖中小矩形的面積等于對(duì)應(yīng)的概率,且各個(gè)小矩形的面積之和為1是解答的關(guān)鍵,著重考查了推理與計(jì)算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
根據(jù)棱錐的結(jié)構(gòu)特點(diǎn),確定所求的圓柱的高和底面半徑.【詳解】由題意四棱錐的底面是邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)均為,借助勾股定理,可知四棱錐的高為,.若圓柱的一個(gè)底面的圓周經(jīng)過(guò)四棱錐四條側(cè)棱的中點(diǎn),圓柱的底面半徑為,一個(gè)底面的圓心為四棱錐底面的中心,故圓柱的高為,故圓柱的體積為.【點(diǎn)睛】本題主要考查了圓柱與四棱錐的組合,考查了空間想象力,屬于基礎(chǔ)題.12、【解析】
根據(jù)可知,得到數(shù)列為等差數(shù)列;利用等差數(shù)列前項(xiàng)和公式構(gòu)造方程可求得;利用等差數(shù)列通項(xiàng)公式求得結(jié)果.【詳解】由得:,即:數(shù)列是公差為的等差數(shù)列又,解得:本題正確結(jié)果:【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式、前項(xiàng)和公式的應(yīng)用,關(guān)鍵是能夠利用判斷出數(shù)列為等差數(shù)列,進(jìn)而利用等差數(shù)列中的相關(guān)公式來(lái)進(jìn)行求解.13、【解析】
令,逐步計(jì)算,即可得到本題答案.【詳解】1.當(dāng)時(shí),因?yàn)?,所以?.當(dāng)時(shí),因?yàn)?,所以?.當(dāng)時(shí),①若,即,有,1)當(dāng),即,,由題,有,得,綜上,無(wú)解;2)當(dāng),即,,由題,有,得,綜上,無(wú)解;②若,,,1)當(dāng),即,,由題,有,得,綜上,得;2)當(dāng),即,,由題,有,得,綜上,得.所以,.故答案為:.【點(diǎn)睛】本題主要考查由數(shù)列遞推公式確定參數(shù)取值范圍的問(wèn)題,分類討論思想是解決本題的關(guān)鍵.14、【解析】
如圖所示,以為軸,為軸建立直角坐標(biāo)系,故,,設(shè).,根據(jù)幾何意義得到最值,【詳解】如圖所示:以為軸,為軸建立直角坐標(biāo)系,故,,設(shè).則.表示的幾何意義為到點(diǎn)的距離的平方減去.根據(jù)圖像知:當(dāng)為或的中點(diǎn)時(shí),有最小值為;當(dāng)與中的一點(diǎn)時(shí)有最大值為.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積的范圍,轉(zhuǎn)化為幾何意義是解題關(guān)鍵.15、1【解析】
利用等差數(shù)列的通項(xiàng)公式即可得出.【詳解】設(shè)等差數(shù)列公差為,∵,,∴,解得=1.故答案為:1.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,考查了計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
由函數(shù)的部分圖像,先求得,得到,再由,得到,結(jié)合,求得,即可得到函數(shù)的解析式.【詳解】由題意,根據(jù)函數(shù)的部分圖像,可得,所以,又由,即,又由,即,解得,即,又因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題主要考查了利用三角函數(shù)的圖象求解函數(shù)的解析式,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)從程序框圖可提煉出分段函數(shù)的函數(shù)表達(dá)式,從而計(jì)算得到的值;(2)此題為幾何概型,分類討論得到滿足條件下的函數(shù)x值,從而求得結(jié)果.【詳解】(1)由算法框圖得:當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,,(2)當(dāng)時(shí),,當(dāng)時(shí),由得故所求概率為【點(diǎn)睛】本題主要考查分段函數(shù)的應(yīng)用,算法框圖的理解,意在考查學(xué)生分析問(wèn)題的能力.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用兩角和與差的正弦公式將已知兩式展開(kāi),分別作和、作差可得,,再利用,即可求出結(jié)果;(Ⅱ)由已知求得,再由,利用兩角差的余弦公式展開(kāi)求解,即可求出結(jié)果.【詳解】解:(I)①②由①+②得③由①-②得④由③÷④得(II)∵,,【點(diǎn)睛】本題主要考查了兩角和差的正余弦公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.19、(1)(2)見(jiàn)解析【解析】
(1)等差數(shù)列{an}的公差設(shè)為d,運(yùn)用等差數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公差,進(jìn)而得到所求通項(xiàng)公式;(2)運(yùn)用等差數(shù)列的求和公式,求得(),再由數(shù)列的裂項(xiàng)相消求和可得Tn,再由不等式的性質(zhì)即可得證.【詳解】(1)等差數(shù)列{an}的公差設(shè)為d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,則an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n項(xiàng)和Tn(1)(1)().【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,以及數(shù)列的裂項(xiàng)相消求和,考查方程思想和運(yùn)算能力,屬于中檔題.20、(1);(2)【解析】
(1)由題結(jié)合余弦定理得角的值;(2)由正弦定理可知,,得,利用三角恒等變換得A的函數(shù)即可求范圍【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即,∴,又∵為銳角三角形,∴,則即,所以,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游餐飲員工績(jī)效總結(jié)
- 木材銷售工作總結(jié)
- 服裝店衛(wèi)生衛(wèi)生規(guī)范標(biāo)準(zhǔn)
- 十年級(jí)化學(xué)學(xué)科的教學(xué)工作總結(jié)
- 制冷空調(diào)行業(yè)人力資源管理實(shí)踐
- 《疼痛治療》課件
- 《房地產(chǎn)市場(chǎng)簡(jiǎn)報(bào)》課件
- 2021年廣東省汕尾市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2024年四川省德陽(yáng)市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2021年內(nèi)蒙古自治區(qū)烏海市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 泌尿科一科一品匯報(bào)課件
- 2024年江西省三校生高職英語(yǔ)高考試卷
- 中國(guó)古代文學(xué)智慧樹知到期末考試答案章節(jié)答案2024年廣州大學(xué)
- 重慶市南岸區(qū)2022-2023學(xué)年五年級(jí)上學(xué)期期末語(yǔ)文試卷
- 現(xiàn)澆鋼筋混凝土整體式肋梁樓蓋結(jié)構(gòu)-課程設(shè)計(jì)
- 浙江省舟山市2023-2024學(xué)年高二上學(xué)期1月期末檢測(cè)地理試題(解析版)
- 《寫字樓招商方案》課件
- 服務(wù)器維保應(yīng)急預(yù)案
- 煙花爆竹經(jīng)營(yíng)
- 文旅劇本殺項(xiàng)目策劃方案
- 藥房庫(kù)存盤點(diǎn)與管理培訓(xùn)
評(píng)論
0/150
提交評(píng)論