版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某校高一年級(jí)有男生540人,女生360人,用分層抽樣的方法從高一年級(jí)的學(xué)生中隨機(jī)抽取25名學(xué)生進(jìn)行問(wèn)卷調(diào)查,則應(yīng)抽取的女生人數(shù)為()A.5 B.10 C.15 D.202.執(zhí)行如下圖所示的程序框圖,若輸出的,則輸入的的值為()A. B. C. D.3.某中學(xué)高一年級(jí)甲班有7名學(xué)生,乙班有8名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)的莖葉圖如圖所示,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績(jī)的中位數(shù)是82,若從成績(jī)?cè)诘膶W(xué)生中隨機(jī)抽取兩名學(xué)生,則兩名學(xué)生的成績(jī)都高于82分的概率為()A. B. C. D.4.在中,若,,,則()A. B. C. D.5.在中任取一實(shí)數(shù)作為x,則使得不等式成立的概率為()A. B. C. D.6.一個(gè)盒子內(nèi)裝有大小相同的紅球、白球和黑球若干個(gè),從中摸出1個(gè)球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或紅球的概率是()A.0.3 B.0.55 C.0.7 D.0.757.已知x,x134781016y57810131519則線性回歸方程y=A.(8,10) B.(8,11) C.(7,10) D.(7,11)8.單位圓中,的圓心角所對(duì)的弧長(zhǎng)為()A. B. C. D.9.石臼是人類以各種石材制造的,用以砸、搗、研磨藥材、食品等的生產(chǎn)工具,是由長(zhǎng)方體挖去半球所得幾何體,若某石臼的三視圖如圖所示(單位:dm),則其表面積(單位:dm2)為()A.132+8π B.168+4π C.132+12π D.168+16π10.已知函數(shù)的零點(diǎn)是和(均為銳角),則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,、、所對(duì)的邊依次為、、,且,若用含、、,且不含、、的式子表示,則_______.12.設(shè)公差不為零的等差數(shù)列的前項(xiàng)和為,若,則__________.13.已知銳角的外接圓的半徑為1,,則的面積的取值范圍為_(kāi)____.14.如圖,在中,已知點(diǎn)在邊上,,,則的長(zhǎng)為_(kāi)___________.15.當(dāng)時(shí),不等式成立,則實(shí)數(shù)k的取值范圍是______________.16.已知,則的值為_(kāi)_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.是亞太區(qū)域國(guó)家與地區(qū)加強(qiáng)多邊經(jīng)濟(jì)聯(lián)系、交流與合作的重要組織,其宗旨和目標(biāo)是“相互依存、共同利益,堅(jiān)持開(kāi)放性多邊貿(mào)易體制和減少區(qū)域間貿(mào)易壁壘.”2017年會(huì)議于11月10日至11日在越南峴港舉行.某研究機(jī)構(gòu)為了了解各年齡層對(duì)會(huì)議的關(guān)注程度,隨機(jī)選取了100名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,,,).(1)求選取的市民年齡在內(nèi)的人數(shù);(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再?gòu)闹羞x取2人參與會(huì)議的宣傳活動(dòng),求參與宣傳活動(dòng)的市民中至少有一人的年齡在內(nèi)的概率.18.如圖,某廣場(chǎng)中間有一塊綠地,扇形所在圓的圓心為,半徑為,,廣場(chǎng)管理部門欲在綠地上修建觀光小路:在上選一點(diǎn),過(guò)修建與平行的小路,與平行的小路,設(shè)所修建的小路與的總長(zhǎng)為,.(1)試將表示成的函數(shù);(2)當(dāng)取何值時(shí),取最大值?求出的最大值.19.已知.(1)若三點(diǎn)共線,求實(shí)數(shù)的值;(2)證明:對(duì)任意實(shí)數(shù),恒有成立.20.在中,內(nèi)角的對(duì)邊分別為,且.(1)求角;(2)若,,求的值.21.已知數(shù)列滿足,數(shù)列滿足,且(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
利用分層抽樣的定義和方法求解即可.【詳解】設(shè)應(yīng)抽取的女生人數(shù)為,則,解得.故選B【點(diǎn)睛】本題主要考查分層抽樣的定義及方法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.2、D【解析】由題意,當(dāng)輸入,則;;;,終止循環(huán),則輸出,所以,故選D.3、D【解析】
計(jì)算得到,,再計(jì)算概率得到答案.【詳解】,解得;,解得;故.故選:.【點(diǎn)睛】本題考查了平均值,中位數(shù),概率的計(jì)算,意在考查學(xué)生的應(yīng)用能力.4、D【解析】
由正弦定理構(gòu)造方程即可求得結(jié)果.【詳解】由正弦定理得:本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦定理解三角形的問(wèn)題,屬于基礎(chǔ)題.5、C【解析】
先求解不等式,再利用長(zhǎng)度型的幾何概型概率公式求解即可【詳解】由題,因?yàn)?解得,則,故選:C【點(diǎn)睛】本題考查長(zhǎng)度型的幾何概型,考查解對(duì)數(shù)不等式6、D【解析】
由題意可知摸出黑球的概率,再根據(jù)摸出黑球,摸出紅球?yàn)榛コ馐录?,根?jù)互斥事件的和即可求解.【詳解】因?yàn)閺闹忻?個(gè)球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因?yàn)閺暮凶又忻?個(gè)球?yàn)楹谇蚧蚣t球?yàn)榛コ馐录?,所以摸出黑球或紅球的概率,故選D.【點(diǎn)睛】本題主要考查了兩個(gè)互斥事件的和事件,其概率公式,屬于中檔題.7、D【解析】
先計(jì)算x,【詳解】x=線性回歸方程y=a+故答案選D【點(diǎn)睛】本題考查了回歸方程,回歸方程一定過(guò)數(shù)據(jù)中心點(diǎn).8、B【解析】
將轉(zhuǎn)化為弧度,即可得出答案.【詳解】,因此,單位圓中,的圓心角所對(duì)的弧長(zhǎng)為.故選B.【點(diǎn)睛】本題考查角度與弧度的轉(zhuǎn)化,同時(shí)也考查了弧長(zhǎng)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.9、B【解析】
利用三視圖的直觀圖,畫(huà)出幾何體的直觀圖,然后求解表面積即可.【詳解】幾何體的直觀圖如圖:幾何體的表面積為:6×6×2+4×6×4﹣4π+2π×22=168+4π.故選:B.【點(diǎn)評(píng)】本題考查三視圖及求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.10、B【解析】
將函數(shù)零點(diǎn)轉(zhuǎn)化的解,利用韋達(dá)定理和差公式得到,得到答案.【詳解】的零點(diǎn)是方程的解即均為銳角故答案為B【點(diǎn)睛】本題考查了函數(shù)零點(diǎn),韋達(dá)定理,和差公式,意在考查學(xué)生的綜合應(yīng)用能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用誘導(dǎo)公式,二倍角公式,余弦定理化簡(jiǎn)即可得解.【詳解】.故答案為.【點(diǎn)睛】本題主要考查了誘導(dǎo)公式,二倍角的三角函數(shù)公式,余弦定理,屬于中檔題.12、【解析】
設(shè)出數(shù)列的首項(xiàng)和公差,根據(jù)等差數(shù)列通項(xiàng)公式和前項(xiàng)和公式,代入條件化簡(jiǎn)得和的關(guān)系,再代入所求的式子進(jìn)行化簡(jiǎn)求值.【詳解】解:設(shè)等差數(shù)列的首項(xiàng)為,公差為,由,得,得,.故答案為:【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式和前n項(xiàng)和公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ).13、【解析】
由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面積公式,三角函數(shù)恒等變換的應(yīng)用可求S△ABC═sin(2B﹣)+,由銳角三角形求B的范圍,進(jìn)而利用正弦函數(shù)的圖象和性質(zhì)即可得解.【詳解】解:∵銳角△ABC的外接圓的半徑為1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C為銳角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案為:(1,].【點(diǎn)睛】本題主要考查了正弦定理,三角形面積公式,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.14、【解析】
由誘導(dǎo)公式可知,在中用余弦定理可得BD的長(zhǎng)?!驹斀狻坑深}得,,在中,可得,又,代入得,解得.故答案為:【點(diǎn)睛】本題考查余弦定理和誘導(dǎo)公式,是基礎(chǔ)題。15、k∈(﹣∞,1]【解析】
此題先把常數(shù)k分離出來(lái),再構(gòu)造成再利用導(dǎo)數(shù)求函數(shù)的最小值,使其最小值大于等于k即可.【詳解】由題意知:∵當(dāng)0≤x≤1時(shí)(1)當(dāng)x=0時(shí),不等式恒成立k∈R(2)當(dāng)0<x≤1時(shí),不等式可化為要使不等式恒成立,則k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵當(dāng)0<x≤1時(shí),g'(x)<0∴g(x)為單調(diào)遞減函數(shù)∴g(x)<g(0)=0∴f'(x)<0即函數(shù)f(x)為單調(diào)遞減函數(shù)所以f(x)min=f(1)=1即k≤1綜上所述,由(1)(2)得k≤1故答案為:k∈(﹣∞,1].【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值,屬于中檔題型.16、【解析】
由題意利用誘導(dǎo)公式求得的值,可得要求式子的值.【詳解】,則,故答案為:.【點(diǎn)睛】本題主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)30人;(2).【解析】
(1)由頻率分布直方圖,先求出年齡在內(nèi)的頻率,進(jìn)而可求出人數(shù);(2)先由分層抽樣,確定應(yīng)從第3,4組中分別抽取3人,2人,記第3組的3名志愿者分別為,第4組的2名志愿者分別為,再用列舉法,分別列舉出總的基本事件,以及滿足條件的基本事件,基本事件個(gè)數(shù)比即為所求概率.【詳解】(1)由題意可知,年齡在內(nèi)的頻率為,故年齡在內(nèi)的市民人數(shù)為.(2)易知,第4組的人數(shù)為,故第3,4組共有50名市民,所以用分層抽樣的方法在50名志愿者中抽取5名志愿者,每組抽取的人數(shù)分別為:第3組;第4組.所以應(yīng)從第3,4組中分別抽取3人,2人.記第3組的3名志愿者分別為,第4組的2名志愿者分別為,則從5名志愿者中選取2名志愿者的所有情況為,,,,,,,,,,共有10種.其中第4組的2名志愿者至少有一名志愿者被選中的有:,,,,,,,共有7種,所以至少有一人的年齡在內(nèi)的概率為.【點(diǎn)睛】本題主要考查由頻率分布直方圖求頻數(shù),以及古典概型的概率問(wèn)題,會(huì)分析頻率分布直方圖,熟記古典概型的概率計(jì)算公式即可,屬于??碱}型.18、(1),;(2)時(shí),.【解析】
(1)由扇形的半徑為,在中,,則,利用正弦定理求出、,從而可得出函數(shù);(2)利用三角恒等變換思想,可得出,,利用正弦函數(shù)的單調(diào)性與最值即可求出的最大值.【詳解】(1)由于扇形的半徑為,,在中,,由正弦定理,,同理.,;(2),.,,當(dāng),即時(shí),.【點(diǎn)睛】本題考查三角函數(shù)的實(shí)際應(yīng)用,考查正弦定理與三角恒等變換思想的應(yīng)用,解題的關(guān)鍵就是利用三角恒等變換思想將三角函數(shù)解析式化簡(jiǎn),考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.19、(1)-3;(2)證明見(jiàn)解析.【解析】分析:(1)由題意可得,結(jié)合三點(diǎn)共線的充分必要條件可得.(2)由題意結(jié)合平面向量數(shù)量積的坐標(biāo)運(yùn)算法則可得,則恒有成立.詳解:(1),∵三點(diǎn)共線,∴,∴.(2),∴,∴恒有成立.點(diǎn)睛:本題主要考查平面向量數(shù)量積的運(yùn)算法則,二次函數(shù)的性質(zhì)及其應(yīng)用等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.20、(1)(2),【解析】
(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【詳解】(1)由題意知,由正弦定理可得,因?yàn)?,則,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中解答中熟記三
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度美發(fā)店投資合伙創(chuàng)業(yè)入股協(xié)議范本3篇
- 技術(shù)創(chuàng)新助力職場(chǎng)孕婦的平衡生活
- 商業(yè)地產(chǎn)中的創(chuàng)意辦公空間開(kāi)發(fā)策略
- 現(xiàn)代辦公文檔的字體風(fēng)格指南
- 2025版科技孵化器場(chǎng)地租賃合同范本4篇
- 2025年現(xiàn)代農(nóng)業(yè)小型廠房場(chǎng)地租賃合同范本2篇
- 2024版機(jī)動(dòng)車輛抵押借款合同
- 2025彩鋼房綠色建筑認(rèn)證與評(píng)價(jià)合同3篇
- 二零二五版旅游行業(yè)旅游裝備租賃派遣服務(wù)協(xié)議3篇
- 二零二五年度能源項(xiàng)目合作擔(dān)保合同示范4篇
- 二零二五年度無(wú)人駕駛車輛測(cè)試合同免責(zé)協(xié)議書(shū)
- 2025年湖北華中科技大學(xué)招聘實(shí)驗(yàn)技術(shù)人員52名歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 高三日語(yǔ)一輪復(fù)習(xí)助詞「と」的用法課件
- 毛渣采購(gòu)合同范例
- 2023中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)-注射相關(guān)感染預(yù)防與控制
- 五年級(jí)上冊(cè)小數(shù)遞等式計(jì)算200道及答案
- 2024年廣東高考政治真題考點(diǎn)分布匯 總- 高考政治一輪復(fù)習(xí)
- 燃?xì)夤艿滥甓葯z驗(yàn)報(bào)告
- GB/T 44052-2024液壓傳動(dòng)過(guò)濾器性能特性的標(biāo)識(shí)
- FZ/T 81013-2016寵物狗服裝
- JB∕T 14089-2020 袋式除塵器 濾袋運(yùn)行維護(hù)技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論