




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在面積為S的平行四邊形ABCD內(nèi)任取一點P,則三角形PBD的面積大于的概率為()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,若輸入的a,b的值分別為1,1,則輸出的是()A.29 B.17 C.12 D.53.已知集合,,則()A. B. C. D.4.在空間四邊形中,分別是的中點.若,且與所成的角為,則四邊形的面積為()A. B. C. D.5.若,則下列不等式不成立的是()A. B. C. D.6.在中,設(shè)角,,的對邊分別是,,,且,則一定是()A.等邊三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形7.下列關(guān)于極限的計算,錯誤的是()A.B.C.D.已知,則8.若,,則的終邊所在的象限為()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限9.已知等比數(shù)列{an}的前n項和為Sn,若2Sn=an+1﹣1(n∈N*),則首項a1為()A.1 B.2 C.3 D.410.若,,且,則與的夾角是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,,則的最小值為______.12.已知數(shù)列滿足,則__________.13.已知,,且,則的最小值為________.14.設(shè)等比數(shù)列的首項為,公比為,所有項和為1,則首項的取值范圍是____________.15.的最大值為______.16.已知銳角、滿足,,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐中,垂直于平面,.求證:平面.18.在平面直角坐標系xOy中,曲線與x軸交于不同的兩點A,B,曲線Γ與y軸交于點C.(1)是否存在以AB為直徑的圓過點C?若存在,求出該圓的方程;若不存在,請說明理由;(2)求證:過A,B,C三點的圓過定點,并求出該定點的坐標.19.如圖,在四棱錐中,,底面為平行四邊形,平面.()求證:平面;()若,,,求三棱錐的體積;()設(shè)平面平面直線,試判斷與的位置關(guān)系,并證明.20.在等差數(shù)列中,為其前項和(),且,.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項為,證明:21.已知等差數(shù)列滿足,前項和.(1)求的通項公式(2)設(shè)等比數(shù)列滿足,,求的通項公式及的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
轉(zhuǎn)化條件求出滿足要求的P點的范圍,求出面積比即可得解.【詳解】如圖,設(shè)P到BD距離為h,A到BD距離為H,則,,滿足條件的點在和中,所求概率.故選:A.【點睛】本題考查了幾何概型的概率計算,屬于基礎(chǔ)題.2、B【解析】
根據(jù)程序框圖依次計算得到答案.【詳解】結(jié)束,輸出故答案選B【點睛】本題考查了程序框圖的計算,屬于??碱}型.3、A【解析】
首先求得集合,根據(jù)交集定義求得結(jié)果.【詳解】本題正確選項:【點睛】本題考查集合運算中的交集運算,屬于基礎(chǔ)題.4、A【解析】
連接EH,因為EH是△ABD的中位線,所以EH∥BD,且EH=BD.同理,F(xiàn)G∥BD,且FG=BD,所以EH∥FG,且EH=FG.所以四邊形EFGH為平行四邊形.因為AC=BD=a,AC與BD所成的角為60°所以EF=EH.所以四邊形EFGH為菱形,∠EFG=60°.∴四邊形EFGH的面積是2××()2=a2故答案為a2,故選A.考點:本題主要是考查的知識點簡單幾何體和公理四,公理四:和同一條直線平行的直線平行,證明菱形常用方法是先證明它是平行四邊形再證明鄰邊相等,以及面積公式屬于基礎(chǔ)題.點評:解決該試題的關(guān)鍵是先證明四邊形EFGH為菱形,然后說明∠EFG=60°,最后根據(jù)三角形的面積公式即可求出所求.5、B【解析】
根據(jù)不等式的基本性質(zhì)、重要不等式、函數(shù)的單調(diào)性即可得出結(jié)論.【詳解】解:∵,∴,,∴,即,故A成立;,即,故B不成立;,即,故C成立;∵指數(shù)函數(shù)在上單調(diào)遞增,且,∴,故D成立;故選:B.【點睛】本題主要考查不等式的基本性質(zhì),作差法比較大小,屬于基礎(chǔ)題.6、C【解析】
利用二倍角公式化簡已知表達式,利用余弦定理化角為邊的關(guān)系,即可推出三角形的形狀.【詳解】解:因為,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故選:.【點睛】本題考查三角形的形狀的判斷,余弦定理的應用,考查計算能力,屬于中檔題.7、B【解析】
先計算每個極限,再判斷,如果是數(shù)列和的極限還需先求和,再求極限.【詳解】,A正確;∵,∴,B錯;,C正確;若,需按奇數(shù)項和偶數(shù)項分別求和后再極限,即,D正確.故選:B.【點睛】本題考查數(shù)列的極限,掌握極限運算法則是解題基礎(chǔ).在求數(shù)列前n項和的極限時,需先求出數(shù)列的前n項和,再對和求極限,不能對每一項求極限再相加.8、B【解析】由一全正二正弦三正切四余弦可得的終邊所在的象限為第二象限,故選B.考點:三角函數(shù)9、A【解析】
等比數(shù)列的公比設(shè)為,分別令,結(jié)合等比數(shù)列的定義和通項公式,解方程可得所求首項.【詳解】等比數(shù)列的公比設(shè)為,由,令,可得,,兩式相減可得,即,又所以.故選:A.【點睛】本題考查數(shù)列的遞推式的運用,等比數(shù)列的定義和通項公式,考查方程思想和運算能力,屬于基礎(chǔ)題.10、B【解析】
根據(jù)相互垂直的向量數(shù)量積為零,求出與的夾角.【詳解】由題有,即,故,因為,所以.故選:B.【點睛】本題考查了向量的數(shù)量積運算,向量夾角的求解,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將所求的式子變形為,展開后可利用基本不等式求得最小值.【詳解】解:,,,,當且僅當時取等號.故答案為1.【點睛】本題考查了“乘1法”和基本不等式,屬于基礎(chǔ)題.由于已知條件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式來求得最小值了.12、【解析】
數(shù)列為以為首項,1為公差的等差數(shù)列?!驹斀狻恳驗樗杂炙詳?shù)列為以為首項,1為公差的等差數(shù)列。所以所以故填【點睛】本題考查等差數(shù)列,屬于基礎(chǔ)題。13、【解析】
由,可得,然后利用基本不等式可求出最小值.【詳解】因為,所以,當且僅當,時取等號.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件.14、【解析】
由題意可得得且,可得首項的取值范圍.【詳解】解:由題意得:,,故答案為:.【點睛】本題主要考查等比數(shù)列前n項的和、數(shù)列極限的運算,屬于中檔題.15、3【解析】
由余弦型函數(shù)的值域可求得整個函數(shù)的值域,進而得到最大值.【詳解】,即故答案為:【點睛】本題考查含余弦型函數(shù)的值域的求解問題,關(guān)鍵是明確在自變量無范圍限制時,余弦型函數(shù)的值域為.16、.【解析】試題分析:由題意,所以.考點:三角函數(shù)運算.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、證明見解析【解析】
分析:由線面垂直的性質(zhì)可得,結(jié)合,利用線面垂直的判定定理可得平面.詳解:∵面,在面內(nèi),∴,又∵,,∴面.點睛:證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì);(4)利用面面垂直的性質(zhì),當兩個平面垂直時,在一個平面內(nèi)垂直于交線的直線垂直于另一個平面.18、(1)存在,(2)證明見解析,圓方程恒過定點或【解析】
(1)將曲線Γ方程中的y=1,得x2﹣mx+2m=1.利用韋達定理求出C,通過坐標化,求出m得到所求圓的方程.(2)設(shè)過A,B,C的圓P的方程為(x﹣a)2+(y﹣b)2=r2列出方程組利用圓系方程,推出圓P方程恒過定點即可.【詳解】由曲線Γ:y=x2﹣mx+2m(m∈R),令y=1,得x2﹣mx+2m=1.設(shè)A(x1,1),B(x2,1),則可得△=m2﹣8m>1,x1+x2=m,x1x2=2m.令x=1,得y=2m,即C(1,2m).(1)若存在以AB為直徑的圓過點C,則,得,即2m+4m2=1,所以m=1或.由△>1,得m<1或m>8,所以,此時C(1,﹣1),AB的中點M(,1)即圓心,半徑r=|CM|故所求圓的方程為.(2)設(shè)過A,B,C的圓P的方程為(x﹣a)2+(y﹣b)2=r2滿足代入P得展開得(﹣x﹣2y+2)m+x2+y2﹣y=1當,即時方程恒成立,∴圓P方程恒過定點(1,1)或.【點睛】本題考查圓的方程的應用,圓系方程恒過定點的求法,考查轉(zhuǎn)化思想以及計算能力.19、(1)證明見解析;(2);(3),證明見解析.【解析】
(1)根據(jù)題意得到,,面從而得到線線垂直;(2)由圖形特點得到面,代入數(shù)據(jù)可得到體積值;(3)證明平面,利用平面平面,可得..【詳解】()證明:∵面,面,∴,又∵,面,面,,∴面,()∵底面為平行四邊形,面,∴面,∴.().證明:∵底面為平行四邊形,∴,∵面,面,∴面,又∵面面,面,∴.20、(1);(2)見解析【解析】
(1)運用等差數(shù)列的通項公式和求和公式,解方程組,可得首項和公差,即可得到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東藥品食品職業(yè)學院高職單招職業(yè)適應性測試歷年(2019-2024年)真題考點試卷含答案解析
- 2025年山東職業(yè)學院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 2025年山東杏林科技職業(yè)學院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 2025年寧夏工商職業(yè)技術(shù)學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- AFP培訓課件2022教學課件
- 旅途中的一見鐘情
- 計量單位書寫規(guī)范
- 教育行業(yè)股東大會
- CAD基礎(chǔ)知識課件
- 異常子宮出血護理查房
- 2024年4月自考00150金融理論與實務試題及答案
- 2024年海南發(fā)展控股有限公司招聘筆試參考題庫含答案解析
- 上海市長寧區(qū)2022屆初三中考二模英語試卷+答案
- 嵌入式系統(tǒng)基礎(chǔ)
- 安全施工及應急措施方案
- 國際化學品安全告知卡(二甲胺)
- 小學生安全教育完整課件
- 陜旅版四年級英語下冊Unit-5-Where-Are-You-Going第2課時課件
- 畢業(yè)設(shè)計(論文)-巴哈賽車懸架系統(tǒng)設(shè)計
- 招銀國際投資銀行業(yè)務介紹課件
- 富余水深與船體下沉量的關(guān)系
評論
0/150
提交評論