教師招考小學(xué)數(shù)學(xué)知識點歸納_第1頁
教師招考小學(xué)數(shù)學(xué)知識點歸納_第2頁
教師招考小學(xué)數(shù)學(xué)知識點歸納_第3頁
教師招考小學(xué)數(shù)學(xué)知識點歸納_第4頁
教師招考小學(xué)數(shù)學(xué)知識點歸納_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

教師招考小學(xué)數(shù)學(xué)知識點歸納

第一章數(shù)和數(shù)的運算

一概念

(一)整數(shù)

1、整數(shù)的意義自然數(shù)和0都是整數(shù)。

2、自然數(shù)我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3……叫

做自然數(shù)。一個物體也沒有,用0表示。0也是自然數(shù)。

3、計數(shù)單位一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是

計數(shù)單位。每相鄰兩個計數(shù)單位之間的進率都是10o這樣的計數(shù)法叫做十進

制計數(shù)法。

4、數(shù)位計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。

5、數(shù)的整除整數(shù)a除以整數(shù)b(b#0),除得的商是整數(shù)而沒有余數(shù),

我們就說a能被b整除,或者說b能整除a。例如15+3=5,所以15能

被3整除,3能整除15。

如果數(shù)a能被數(shù)b(bWO)整除,a就叫做b的倍數(shù),b就叫做a的

因數(shù)。倍數(shù)和約數(shù)是相互依存的。

一個數(shù)的因數(shù)的個數(shù)是有限的,其中最小的因數(shù)是1,最大的因數(shù)是它本身。

一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。

個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、

304,都能被2整除。。個位上是0或5的數(shù),都能被5整除,例如:5、

30、405都能被5整除…

一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、

108、204都能被3整除。能被2整除的數(shù)叫做偶數(shù),不能被2整除的

數(shù)叫做奇數(shù)。0也是偶數(shù)。自然數(shù)按能否被2整除的特征可分為奇數(shù)和偶數(shù)。

一個數(shù),如果只有1和它本身兩個因數(shù),這樣的數(shù)叫做質(zhì)數(shù),100以內(nèi)的質(zhì)

數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、

41、43、47、53、59、61、67、71、73、79、83、89、

97o

一個數(shù),如果除了1和它本身還有別的因數(shù),這樣的數(shù)叫做合數(shù),例如4、6、

8、9、12都是合數(shù)。

1不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了1外,不是質(zhì)數(shù)就是合數(shù)。如果把自然

數(shù)按其因數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和1。

每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),

叫做這個合數(shù)的質(zhì)因數(shù),例如15=3X5,3和5叫做15的質(zhì)因數(shù)。1把

一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。例如把28分解質(zhì)

因數(shù)28=2X2X7

幾個數(shù)公有的因數(shù),叫做這幾個數(shù)的公因數(shù)。其中最大的一個,叫做這幾個數(shù)的

最大公因數(shù),例如12的約數(shù)有1、2、3、4、6、12;18的約數(shù)

有1、2、3、6、9,18。其中,1、2、3、6是12和18的

公因數(shù),6是它們的最大公因數(shù)。公約數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù),成

互質(zhì)關(guān)系的兩個數(shù),有下列幾種情況:

1和任何自然數(shù)互質(zhì)。相鄰的兩個自然數(shù)互質(zhì)。兩個不同的質(zhì)數(shù)互質(zhì)。

當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。兩個合數(shù)的公約數(shù)只有

1時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就說這幾個數(shù)兩兩互

質(zhì)。

如果較小數(shù)是較大數(shù)的因數(shù),那么較小數(shù)就是這兩個數(shù)的最大公因數(shù)。

如果兩個數(shù)是互質(zhì)數(shù),它們的最大公因數(shù)就是1。幾個數(shù)公有的倍數(shù),叫做這

幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),2的倍數(shù)有

2、6、如4、8、10、12、...3的倍數(shù)有3、6、9、12、

15、18……其中6、12、18……是2、3的公倍數(shù),6是它們的

最小公倍數(shù)。。

如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。

如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。

幾個數(shù)的公因數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。

(二)小數(shù)

1、小數(shù)的意義把整數(shù)1平均分成10份、100份、1000份……得到的

十分之幾、百分之幾、千分之幾……可以用小數(shù)表示。一位小數(shù)表示十分之幾,

兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……在小數(shù)里,每相鄰兩個計

數(shù)單位之間的進率都是10。小數(shù)部分的最高分數(shù)單位“十分之一”和整

數(shù)部分的最低單位“一”之間的進率也是10o

2、小數(shù)的分類循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有一個數(shù)字或者幾個數(shù)字依次

不斷重復(fù)出現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。例如:3.555……0.0333……

12.109109……一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字叫做這個

循環(huán)小數(shù)的循環(huán)節(jié)。例如:3.99……的循環(huán)節(jié)是“9”,0.5454……的

循環(huán)節(jié)是“54”o

(三)分數(shù)

1、分數(shù)的意義把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)

叫做分數(shù)。在分數(shù)里,中間的橫線叫做分數(shù)線;分數(shù)線下面的數(shù),叫做分母,表

示把單位“1”平均分成多少份;分數(shù)線下面的數(shù)叫做分子,表示有這樣的多

少份。把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分數(shù)單位。

2、分數(shù)的分類真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于1。

假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或

等于1。帶分數(shù):假分數(shù)可以寫成整數(shù)與真分數(shù)合成的數(shù),通常叫做帶分數(shù)。

(四)百分數(shù)

1、表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分數(shù),也叫做百分率或百分

比。百分數(shù)通常用級”來表示。百分號是表示百分數(shù)的符號。

二方法

(一)數(shù)的讀法和寫法

1.整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級

的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都

不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。

2.整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,

就在那個數(shù)位上寫0。

3.小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作

“點”,小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。

4.小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個

位右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。

5.分數(shù)的讀法:讀分數(shù)時,先讀分母再讀“分之”然后讀分子,分子和分

母按照整數(shù)的讀法來讀。

6.分數(shù)的寫法:先寫分數(shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。

7.百分數(shù)的讀法:讀百分數(shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按

照整數(shù)的讀法來讀。

8.百分數(shù)的寫法:百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分

號“%”來表示。

2.近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾

數(shù),用一個近似數(shù)來表示。例如:1302490015省略億后面的尾數(shù)是13億。

3.四舍五入法:要省略的尾數(shù)的最高位上的數(shù)是4或者比4小,就把尾數(shù)

去掉;如果尾數(shù)的最高位上的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的

前一位進1。例如:省略345900萬后面的尾數(shù)約是35萬。省略

4725097420億后面的尾數(shù)約是47億。

(三)數(shù)的互化

1.小數(shù)化成分數(shù):原來有幾位小數(shù),就在1的后面寫幾個零作分母,把原來

的小數(shù)去掉小數(shù)點作分子,能約分的要約分。

2.分數(shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,

不能化成有限小數(shù)的,一般保留三位小數(shù)。

3.一個最簡分數(shù),如果分母中除了2和5以外,不含有其他的質(zhì)因數(shù),這

個分數(shù)就能化成有限小數(shù);如果分母中含有2和5以外的質(zhì)因數(shù),這個分數(shù)

就不能化成有限小數(shù)。

4.小數(shù)化成百分數(shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。

5.百分數(shù)化成小數(shù):把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向

左移動兩位。

6.分數(shù)化成百分數(shù):通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),

再把小數(shù)化成百分數(shù)。

7.百分數(shù)化成小數(shù):先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。

(二)數(shù)的改寫

一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或

“億”作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫

成近似數(shù)。

1.準確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬

或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。例如把1254300000改寫成以

萬做單位的數(shù)是125430萬;改寫成以億做單位的數(shù)12.543億。

(四)數(shù)的整除

1.把一個合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個合數(shù)的質(zhì)數(shù)去除,

一直除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫成連乘的形式。

2.求幾個數(shù)的最大公因數(shù)的方法是:先用這幾個數(shù)的公約數(shù)連續(xù)去除,一直除

到所得的商只有公因數(shù)1為止,然后把所有的除數(shù)連乘求積,這個積就是這幾

個數(shù)的的最大公約數(shù)。

3.求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)(或其中的部分數(shù))的公約

數(shù)去除,一直除到互質(zhì)(或兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,

這個積就是這幾個數(shù)的最小公倍數(shù)。

4.成為互質(zhì)關(guān)系的兩個數(shù):1和任何自然數(shù)互質(zhì);相鄰的兩個自然數(shù)互質(zhì);

當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì);兩個合數(shù)的公約數(shù)只有

1時,這兩個合數(shù)互質(zhì)。

(五)約分和通分約分的方法:用分子和分母的公約數(shù)(1除外)去除分子、

分母;通常要除到得出最簡分數(shù)為止。通分的方法:先求出原來的幾個分數(shù)分母

的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。被除數(shù)

?除數(shù)=商除數(shù)=被除數(shù)+商被除數(shù)=商X除數(shù)三性質(zhì)和規(guī)律

(一)商不變的規(guī)律商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時

縮小相同的倍,商不變。

(二)小數(shù)的性質(zhì)小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。

(三)小數(shù)點位置的移動引起小數(shù)大小的變化1.小數(shù)點向右移動一位,原來

的數(shù)就擴大10倍;小數(shù)點向右移動兩位,原來的數(shù)就擴大100倍;……2.小

數(shù)點向左移動一位,原來的數(shù)就縮小10倍;小數(shù)點向左移動兩位,原來的數(shù)

就縮小100倍;……3.小數(shù)點向左移或者向右移位數(shù)不夠時,“0〃補足

位。要用

(四)分數(shù)的基本性質(zhì)分數(shù)的基本性質(zhì):分數(shù)的分子和分母都乘以或者除以相同

的數(shù)(零除外),分數(shù)的大小不變。

(五)分數(shù)與除法的關(guān)系

1.被除數(shù)+除數(shù)=被除數(shù)/除數(shù)

2.因為零不能作除數(shù),所以分數(shù)的分母不能為零。

3.被除數(shù)相當于分子,除數(shù)相當于分母。

(二)小數(shù)四則運算

1.小數(shù)加法:小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個

數(shù)的運算。2.小數(shù)減法:小數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加

數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算.

3.小數(shù)乘法:小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義相同,就是求幾個相同加數(shù)

和的簡便運算;一個數(shù)乘純小數(shù)的意義是求這個數(shù)的十分之幾、百分之幾、千分

之幾是多少。

4.小數(shù)除法:小數(shù)除法的意義與整數(shù)除法的意義相同,就是已知兩個因數(shù)的積

與其中一個因數(shù),求另一個因數(shù)的運算。

四運算的意義

(-)整數(shù)四則運算

1整數(shù)加法:把兩個數(shù)合并成一個數(shù)的運算叫做加法。在加法里,相加的數(shù)叫

做加數(shù),加得的數(shù)叫做和。加數(shù)是部分數(shù),和是總數(shù)。加數(shù)■加數(shù)=和一個加數(shù)

=和一另一個加數(shù)

2整數(shù)減法:已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做

減法。在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做

差。被減數(shù)是總數(shù),減數(shù)和差分別是部分數(shù)。

3整數(shù)乘法:求幾個相同加數(shù)的和的簡便運算叫做乘法。在乘法里,相同的加

數(shù)和相同加數(shù)的個數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。在乘法里,和任何數(shù)相

乘都得0.1和任何數(shù)相乘都的0任何數(shù)。一個因數(shù)X—個因數(shù)=積一個

因數(shù)=積+另一個因數(shù)

4整數(shù)除法:已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除

法。在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)叫做除數(shù),所求的因數(shù)叫

做商。在除法里,0不能做除數(shù)。因為0和任何數(shù)相乘都得0,所以任何一

個數(shù)除以0,均得不到一個確定的商。

(三)分數(shù)四則運算

1.分數(shù)加法:分數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個

數(shù)的運算。

2.分數(shù)減法:分數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其

中的一個加數(shù),求另一個加數(shù)的運算。

3.分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和

的簡便運算。

4.乘積是1的兩個數(shù)叫做互為倒數(shù)。

5.分數(shù)除法:分數(shù)除法的意義與整數(shù)除法的意義相同。就是已知兩個因數(shù)的積

與其中一個因數(shù),求另一個因數(shù)的運算。

(四)運算定律

1.加法交換律:兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,a+b=b+a。

2.加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把

后兩個數(shù)相加,再和第一個數(shù)相加它們的和不變,即(a+b)+c=a+(b+c)o

3.乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置它們的積不變,aXb=bXa。

4.乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把

后兩個數(shù)相乘,再和第一個數(shù)相乘,它們的積不變,即(aXb)Xc=aX(bXc)。

5.乘法分配律:兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘

再把兩個積相加,即(a+b)Xc=aXc+bXc。

6.減法的性質(zhì):從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的

和,差不變,即a-b-c=a-(b+c)。

(五)運算法則

1.回顧整數(shù)加法、減法、乘法的計算法則:

2.整數(shù)除法計算法則:先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的

前幾位;如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上

面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數(shù)要小于除數(shù)。

3.小數(shù)乘法法則:先按照整數(shù)乘法的計算法則算出積,再看因數(shù)中共有幾位小

數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用“0”補足。

4.除數(shù)是整數(shù)的小數(shù)除法計算法則:先按照整數(shù)除法的法則去除,商的小數(shù)點

要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添

“0”,再繼續(xù)除。

5.除數(shù)是小數(shù)的除法計算法則:先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的

小數(shù)點也向右移動幾位(位數(shù)不夠的補“0”),然后按照除數(shù)是整數(shù)的除法

法則進行計算。

6.異分母分數(shù)加減法計算方法:先通分,然后按照同分母分數(shù)加減法的的法

則進行計算

7.帶分數(shù)加減法的計算方法:整數(shù)部分和分數(shù)部分分別相加減,再把所得的

數(shù)合并起來。10.分數(shù)乘法的計算法則:分數(shù)乘分數(shù),用分子相乘的積作分子,

分母相乘的積作分母

11、分數(shù)除法的計算法則:甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒

數(shù)。

(三)面積單位的換算*

1平方分米=100平方厘米*1平方米=100平方分米*1公傾=

10000平方米*1平方千米=100公頃三體積和容積

(-)什么是體積、容積體積,就是物體所占空間的大小。容積,箱子、油桶、

倉庫等所能容納物體的體積,通常叫做它們的容積。

(二)常用單位1體積單位*立方米*立方分米*立方厘米2容積單位

*升*毫升(三)單位換算1體積單位*1立方米=1000立方分米*1立

方分米=1000立方厘米2容積單位*1升=1000毫升*1升=1立方米*

1毫升=1立方厘米

四質(zhì)量*1噸=1000千克*1千克=1000克五時間*1世紀=100年*

1年=365天平年*一年=366天閏年*1天=24小時*1小時=60分*

1分=60秒

(六)運算順序

1.沒有括號的混合運算:同級運算從左往右依次運算;兩級運算先算乘、除

法,后算加減法。

2.有括號的混合運算:先算小括號里面的,再算中括號里面的,最后算括號

外面的。

第二章度量衡

一長度單位之間的換算*1厘米=10毫米*1分米=10厘米*1米=

1000毫米*1千米=1000米

二面積

(一)什么是面積面積,就是物體所占平面的大小。對立體物體的表面的多少的

測量一般稱表面積。

(二)常用的面積單位*平方厘米*平方分米*平方米*平方千米4第三

章代數(shù)初步知識

一、用字母表示數(shù)

1用字母表示數(shù)的意義和作用*用字母表示數(shù),可以把數(shù)量關(guān)系簡明的表達出

來,同時也可以表示運算的結(jié)果。

2用字母表示常見的數(shù)量關(guān)系、運算定律和性質(zhì)、幾何形體的計算公式

(1)常見的數(shù)量關(guān)系路程用s表示,速度v用表示,時間用t表示,三

者之間的關(guān)系:s=vtv=s/tt=s/v總價用a表示,單價用b表示,數(shù)量用

c表示,三者之間的關(guān)系:a=bcb=a/cc=a/b

(2)運算定律和性質(zhì)加法交換律:a+b=b+a加法結(jié)合律:

(a+b)+c=a+(b+c)乘法交換律:ab=ba乘法結(jié)合律:

(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc減法的性質(zhì):a-(b+c)

=a-b-c

(3)用字母表示幾何形體的公式長方形的長用a表示,寬用b表示,周長

用c表示,面積用s表示。c=2(a+b)s=ab正方形的邊長a用表示,周

長用c表示,面積用s表示。c=4as=a?平行四邊形的底a用表示,高

用h表示,面積用s表示。s=ah三角形的底用a表示,高用h表示,面

積用s表示。s=ah/2梯形的上底用a表示,下底b用表示,高用h表示,

面積用s表示。s=(a+b)h/2圓的半徑用r表示,直徑用d表示,周長

用C表示,面積用s表示。c=nd=2nrs=nr?扇形的半徑用r表示,表

示圓心角的度數(shù),n面積用s表示。s=nnr?/360長方體的長用a表示,

寬用b表示,高用h表示,表面積用s表示,體積用v表示。v=sh

s=2(ab+ah+bh)v=abh正方體的棱長用a表示,底面周長c用表示,底

面積用s表示,體積用v表示.s=6a?v=a?圓柱的高用h表示,底面周

長用C表示,底面積用S表示,體積用V表示.S側(cè)=(±S表=5側(cè)

+2s底丫=511圓錐的高用h表示,底面積用s表示,體積用v表示.v=sh/3

3用字母表示數(shù)的寫法數(shù)字和字母、字母和字母相乘時,乘號可以記作”,

或者省略不寫,數(shù)字要寫在字母的前面。當“1”與任何字母相乘時,“1”省

略不寫。4、將數(shù)值代入式子求值把具體的數(shù)代入式子求值時,要注意書寫格

式:先寫出字母等于幾,然后寫出原式,再把數(shù)代入式子求值。字母表示的是數(shù),

后面不寫單位名稱。

二、簡易方程

(一)方程和方程的解

1、方程:含有未知數(shù)的等式叫做方程。注意方程是等式,又含有未知數(shù),兩

者缺一不可。方程和算術(shù)式不同。算術(shù)式是一個式子,它由運算符號和已知數(shù)組

成,它表示未知數(shù)。方程是一個等式,在方程里的未知數(shù)可以參加運算,并且只

有當未知數(shù)為特定的數(shù)值時,方程才成立

02、方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。

三、解方程,求方程的解的過程叫做解方程。

四、列方程解應(yīng)用題

先找出等量關(guān)系,再根據(jù)具體建立等量關(guān)系的需要,把應(yīng)用題中已知數(shù)(量)和

所設(shè)的未知數(shù)(量)列成有關(guān)的代數(shù)式進而列出方程。

五比和比例

1比的意義和性質(zhì)

(1)比的意義兩個數(shù)相除又叫做兩個數(shù)的比。“:”是比號,讀作

“比”。比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前

項除以后項所得的商,叫做比值。同除法比較,比的前項相當于被除數(shù),后項相

當于除數(shù),比值相當于商。比值通常用分數(shù)表示,也可以用小數(shù)表示,有時也可

能是整數(shù)。比的后項不能是零。根據(jù)分數(shù)與除法的關(guān)系,可知比的前項相當于分

子,后項相當于分母,比值相當于分數(shù)值。

(2)比的性質(zhì)比的前項和后項同時乘上或者除以相同的數(shù)(0除外),比值

不變,這叫做比的基本性質(zhì)。

(3)求比值和化簡比求比值的方法:用比的前項除以后項,它的結(jié)果是一個

數(shù)值可以是整數(shù),也可以是小數(shù)或分數(shù)。根據(jù)比的基本性質(zhì)可以把比化成最簡單

的整數(shù)比。它的結(jié)果必須是一個最簡比,即前、后項是互質(zhì)的數(shù)。

(4)比例尺圖上距離:實際距離=比例尺要求會求比例尺;已知圖上距離和

比例尺求實際距離;已知實際距離和比例尺求圖上距離。線段比例尺:在圖上附

有一條注有數(shù)目的線段,用來表示和地面上相對應(yīng)的實際距離。

(5)按比例分配在農(nóng)業(yè)生產(chǎn)和日常生活中,常常需要把一個數(shù)量按照一定的

比來進行分配。這種分配的方法通常叫做按比例分配。方法:首先求出各部分占

總量的幾分之幾,然后求出總數(shù)的幾分之幾是多少。

2比例的意義和性質(zhì)

(1)比例的意義表示兩個比相等的式子叫做比例。組成比例的四個數(shù),叫做

比例的項。兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。

(2)比例的性質(zhì)在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比

例的基本性質(zhì)。

(3)解比例根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項,就可以求出

這個數(shù)比例中的另外一個未知項。求比例中的未知項,叫做解比例。

3正比例和反比例

(1)成正比例的量兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如

果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比

例的量,他們的關(guān)系叫做正比例關(guān)系。用字母表示y/x=k(一定)

(2)成反比例的量兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如

果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的

關(guān)系叫做反比例關(guān)系。用字母表示xXy=k(一定)

第四章幾何的初步知識

一線和角

(1)線*直線直線沒有端點;長度無限;過一點可以畫無數(shù)條,過兩點只能

畫一條直線。*射線射線只有一個端點;長度無限。*線段線段有兩個端點,

它是直線的一部分;長度有限;兩點的連線中,線段為最短。*平行線在同一

平面內(nèi),不相交的兩條直線叫做平行線。兩條平行線之間的垂線長度都相等。

*垂線兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做

另一條直線的垂線,相交的點叫做垂足。從直線外一點到這條直線所畫的垂線

的長叫做這點到直線的距離。

(2)角

(1)從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這

兩條射線叫做角的邊。

(2)角的分類銳角:小于90°的角叫做銳角。鈍角:大于90°而小于

180°的角叫做鈍角。1個周角=2個平角=4個直角。

二、平面圖形

1、長方形

(1)特征對邊相等,4個角都是直角的四邊形。有兩條對稱軸。

(2)計算公式c=2(a+b)s=ab

2、正方形

(1)特征:四條邊都相等,四個角都是直角的四邊形。有4條對稱軸。

(2)計算公式c=4as=a?

3、三角形

(1)特征由三條線段圍成的圖形。內(nèi)角和是180度。三角形具有穩(wěn)定性。

三角形有三條高。

(2)計算公式s=ah/26

(3)分類按角分銳角三角形:三個角都是銳角。直角三角形:有一個角是直

角。等腰三角形的兩個銳角各為45度,它有一條對稱軸。鈍角三角形:有一

個角是鈍角。按邊分不等邊三角形:三條邊長度不相等。等腰三角形:有兩條邊

長度相等;兩個底角相等;有一條對稱軸。等邊三角形:三條邊長度都相等;三

個內(nèi)角都是60度;有三條對稱軸。4平行四邊形

(1)特征兩組對邊分別平行的四邊形。相對的邊平行且相等。對角相等,相

鄰的兩個角的度數(shù)之和為180度。平行四邊形容易變形。

(2)計算公式s=ah

5梯形

(1)特征只有一組對邊平行的四邊形。等腰梯形有一條對稱軸。

(2)公式s=(a+b)h/26圓(1)圓的認識同一個圓里,直徑等于兩個

半徑的長度,即d=2r。圓的大小由半徑?jīng)Q定。圓有無數(shù)條對稱軸。

(2)圓的畫法把圓規(guī)的兩腳分開,定好兩腳間的距離(即半徑);把有針尖

的一只腳固定在一點(即圓心)上;

(3)圓的周長圍成圓的曲線的長叫做圓的周長。把圓的周長和直徑的比值叫

做圓周率。用字母n表示。

(4)圓的面積圓所占平面的大小叫做圓的面積。

(5)計算公式d=2rr=d/2c=TIdc=2TIrs=TIr?7、

圓環(huán)

(1)特征由兩個半徑不相等的同心圓相減而成,有無數(shù)條對稱軸。

(2)計算公式s=n(R?-r?)

9、軸對稱圖形

(1)特征如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖

形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。正方形有4條對稱軸,

長方形有2條對稱軸。等腰三角形有

2條對稱軸,等邊三角形有3條對稱軸。等腰梯形有一條對稱軸,圓有無數(shù)

條對稱軸。三立體圖形

(一)長方體

1、特征六個面都是長方形(有時有兩個相對的面是正方形)。相對的面面積

相等,12條棱相對的4條棱長度相等。有8個頂點。相交于一個頂點的三

條棱的長度分別叫做長、寬、高。把長方體放在桌面上,最多只能看到三個面。

長方體或者正方體6個面的總面積,叫做它的表面積。

2、計算公式s=2(ab+ah+bh)V=shV=abh

(二)正方體S表=6a?v=a?

(三)圓柱

1圓柱的認識圓柱的上下兩個面叫做底面。圓柱有一個曲面叫做側(cè)面。圓柱兩

個底面之間的距離叫做高。進一法:實際中,使用的材料都要比計算的結(jié)果多一

些,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位

進1。這種取近似值的方法叫做進一法。

2計算公式s側(cè)=&s表=5側(cè)+s底X2v=sh/3用整個圓的面積表示總

數(shù),用扇形面積表示各部分所占總數(shù)的百分數(shù)。優(yōu)點:很清楚地表示出各部分同

總數(shù)之間的關(guān)系。

(四)圓錐

1圓錐的認識圓錐的底面是個圓,圓錐的側(cè)面是個曲面。從圓錐的頂點到底面

圓心的距離是圓錐的高。

2計算公式v=sh/3

第五章簡單的統(tǒng)計一統(tǒng)計表二統(tǒng)計圖

(一)意義*用點線面積等來表示相關(guān)的量之間的數(shù)量關(guān)系的圖形叫做統(tǒng)計圖。

(二)分類

1條形統(tǒng)計圖用一個單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少畫成長短不同

的直條,然后把這些直線按一定的順序排列起來。優(yōu)點:很容易看出各種數(shù)量的

多少。

五應(yīng)用

1、解答加法應(yīng)用題:

a求總數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。

b求比一個數(shù)多幾的數(shù)應(yīng)用題:已知甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)

是多少。

2、解答減法應(yīng)用題:

a求剩余的應(yīng)用題:從已知數(shù)中去掉一部分,求剩下的部分。

-b求兩個數(shù)相差的多少的應(yīng)用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多

少,或乙數(shù)比甲數(shù)少多少。

c求比一個數(shù)少幾的數(shù)的應(yīng)用題:已知甲數(shù)是多少,,乙數(shù)比甲數(shù)少多少,求

乙數(shù)是多少。3、解答乘法應(yīng)用題:

a求相同加數(shù)和的應(yīng)用題:已知相同的加數(shù)和相同加數(shù)的個數(shù),求總數(shù)。

b求一個數(shù)的幾倍是多少的應(yīng)用題:已知一個數(shù)是多少,另一個數(shù)是它的幾倍,

求另一個數(shù)是多少。

4、解答除法應(yīng)用題:

a把一個數(shù)平均分成幾份,求每一份是多少的應(yīng)用題:已知一個數(shù)和把這個數(shù)

平均分成幾份的,求每一份是多少。

b求一個數(shù)里包含幾個另一個數(shù)的應(yīng)用題:已知一個數(shù)和每份是多少,求可以

分成幾份。C求一個數(shù)是另一個數(shù)的的幾倍的應(yīng)用題:已知甲數(shù)乙數(shù)各是多少,

求較大數(shù)是較小數(shù)的幾倍。

d已知一個數(shù)的幾倍是多少,求這個數(shù)的應(yīng)用題。

5、常見的數(shù)量關(guān)系:

總價=單價X數(shù)量路程=速度X時間工作總量=工作時間X工作效率

總產(chǎn)量=單產(chǎn)量X數(shù)量6、典型應(yīng)用題具有獨特的結(jié)構(gòu)特征的和特定的解

題規(guī)律的復(fù)合應(yīng)用題,通常叫做典型應(yīng)用題。

(1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。解題關(guān)鍵:在于確定總數(shù)量和

與之相對應(yīng)的總份數(shù)。算術(shù)平均數(shù):已知幾個不相等的同類量和與之相對應(yīng)的份

數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和+數(shù)量的個數(shù)=算術(shù)平均數(shù)。

2折線統(tǒng)計圖用一個單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少描出各點,然

后把各點用線段順次連接起來。優(yōu)點:不但可以表示數(shù)量的多少,而且能夠清楚

地表示出數(shù)量增減變化的情況。

(2)歸一問題:已知相互關(guān)聯(lián)的兩個量,其中一種量改變,另一種量也隨之

而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。這種類型的題目也

可以采用正比例的知識來解決。

3扇形統(tǒng)計圖

(3)歸總問題:是已知單位數(shù)量和計量單位數(shù)量的個數(shù),以及不同的單位數(shù)

量(或單位數(shù)量的個數(shù)),通過求總數(shù)量求得單位數(shù)量的個數(shù)(或單位數(shù)量)。

特點:兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)

律相反,和反比例算法彼此相通。例修一條水渠,原計劃每天修800米,6天

修完。實際4天修完,每天修了多少米?分析:因為要求出每天修的長度,就

必須先求出水渠的長度。所以也把這類應(yīng)用題叫做“歸總問題”。不同之處

是“歸一”先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。

800X64-4=1200(米)

(4)行程問題:關(guān)于走路、行車等問題,一般都是計算路程、時間、速度,

叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、速度和、

速度差等概念,了解他們之間的關(guān)系,再根據(jù)這類問題的規(guī)律解答。解題關(guān)鍵及

規(guī)律:同時同地相背而行:路程=速度和義時間。同時相向而行:相遇時間

=速度和X時間

(5)植樹問題:這類應(yīng)用題是以“植樹”為內(nèi)容。凡是研究總路程、株

距、段數(shù)、棵樹四種數(shù)量關(guān)系的應(yīng)用題,叫做植樹問題。解題關(guān)鍵:解答植樹問

題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹.,

然后按基本公式進行計算。解題規(guī)律:沿線段植樹棵樹=段數(shù)+1棵樹=總路

程+株距+1株距=總路程:(棵樹T)總路程=株距義(棵樹T)

沿周長植樹棵樹=總路程+株距株距=總路程+棵樹總路程=株距

X棵樹例沿公路一旁埋電線桿301根,每相鄰的兩根的間距是50米。后來

全部改裝,只埋了201根。求改裝后每相鄰兩根的間距。分析:本題是沿線段

埋電線桿,要把電線桿的根數(shù)減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論