




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
(第一課時)10.3直角三角形學習目標1.結合具體例子了解逆命題、逆定理的概念,會識別兩個互逆命題.2.經(jīng)歷探索、猜測、證明的過程,了解勾股定理逆定理的證明方法,發(fā)展學生初步的演繹推理能力.互逆命題兩直線平行,同位角相等如果兩個角是對頂角,那么它們相等
在兩個命題中,如果一個命題的條件和結論分別是另一個命題的結論和條件,那么這兩個命題稱為互逆命題,其中一個命題稱為另一個命題的逆命題。新知一:同位角相等,兩直線平行如果兩個角相等,那么它們是對頂角小試牛刀說出下列命題的逆命題,并判斷真假.(1)如果a·b=0,那么a=0,b=0.(2)四邊形是多邊形.(3)等腰三角形有兩個角相等.如果a=0,b=0,那么a·b=0.真命題多邊形是四邊形.假命題有兩個角相等的三角形是等腰三角形真命題命題:直角三角形兩條直角邊的平方和等于斜邊的平方。逆命題:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形??蠢蠋熃o出的這一組勾股定理:直角三角形兩條直角邊的平方和等于斜邊的平方。逆命題:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。yesyesorno?∴∠A=∠A’=90°,因此,△ABC是直角三角形.已知:如圖(1)在△ABC中,AB2+AC2=BC2.求證:△ABC
是直角三角形.∵AB2+AC2=BC2,A’B’=AB,A’C’=AC
∴BC2=B’C’2,∴BC=B’C’證明如圖(2),作△A’B’C’使∠A’=90°,A’B’=AB,A’C’=AC合作.探究圖(1)圖(2)∵△A’B’C’,是直角三角形∴A’B’2+A’C’2=B’C’2()∴△ABC≌△A’B’C’()勾股定理:直角三角形兩條直角邊的平方和等于斜邊的平方。勾股定理的逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。新知:勾股定理及其逆定理逆定理
如果一個定理的逆命題經(jīng)過證明是真命題,那么它也是一個定理,其中一個定理稱為另一個定理的逆定理。新知:幾何的三種語言′駛向勝利的彼岸勾股定理的逆定理:如果三角形兩邊的平方和等于第三邊平方,那么這個三角形是直角三角形.這是判定直角三角形的根據(jù)之一.在△ABC中∵AC2+BC2=AB2(已知),∴△ABC是直角三角形(勾股定理的逆定理).acbABC(1)我學習,我快樂目標導向:借助小組力量,熟練應用勾股定理的逆定理解決問題,提高分析問題的能力!學會分享!學習過程及要求要求自主完成學案(一)全體學生激情投入,全力以赴,自主完成導學案。小組交流小組長發(fā)揮帶頭作用,檢查、落實,按小組內完成情況,自選領學or助學做完的同學可以完成拓展學習題目鞏固訓練:1、已知:線段a,b,c的值如下,則能夠組成直角三角形的是()2、一個三角形的三邊的長分別為12:5:13,這個三角形的形狀是()
3.在△ABC中,已知,AB=13cm,BC=10cm,BC邊上的中線AD=12cm求證:AB=AC
領學助學如圖,在四邊形ABCD中,AB=4,BC=3,CD=13,DA=12,∠B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年涂覆材料合作協(xié)議書
- 馬工學管理學的系統(tǒng)思維試題及答案
- 多樣化用戶需求的滿足試題及答案
- 寵物殯葬師的溝通技巧試題及答案詳解
- 如何提升寵物殯葬師的專業(yè)素養(yǎng)試題及答案
- 2024年預算員學習技巧試題及答案
- 聚焦新變化:2024年注冊會計師考試的試題及答案
- 常見信息化物流師誤區(qū)試題及答案
- 2024年預算員技術更新探索試題及答案
- 2025年環(huán)氧膠水項目建議書
- 外貿部薪酬與提成獎勵設計方案
- 不同人群的生理特點及營養(yǎng)需要
- MOOC 寫作與表達-常熟理工學院 中國大學慕課答案
- 農(nóng)貿市場應急預案
- 肥胖患者麻醉管理專家共識2023年版中國麻醉學指南與專家共識
- 中藥飲片處方點評表-副本(文檔良心出品)
- DL-T 5605-2021太陽能熱發(fā)電廠蒸汽發(fā)生系統(tǒng)設計規(guī)范-PDF解密
- 學校雙重預防體系建設指導書
- 螺螄粉出口貿易的現(xiàn)狀及策略分析
- 2024年江蘇省蘇州市中考數(shù)學一模練習卷
- 家政聘用合同模板
評論
0/150
提交評論