版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024年甘肅省天水市秦州區(qū)天水一中高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,是兩條不重合的直線(xiàn),,是兩個(gè)不重合的平面,則下列命題中錯(cuò)誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則2.在聲學(xué)中,聲強(qiáng)級(jí)(單位:)由公式給出,其中為聲強(qiáng)(單位:).,,那么()A. B. C. D.3.已知平面和直線(xiàn)a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則4.已知向量,,,若,則()A. B. C. D.5.為了研究國(guó)民收入在國(guó)民之間的分配,避免貧富過(guò)分懸殊,美國(guó)統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線(xiàn),如圖所示.勞倫茨曲線(xiàn)為直線(xiàn)時(shí),表示收入完全平等.勞倫茨曲線(xiàn)為折線(xiàn)時(shí),表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱(chēng)為基尼系數(shù).對(duì)于下列說(shuō)法:①越小,則國(guó)民分配越公平;②設(shè)勞倫茨曲線(xiàn)對(duì)應(yīng)的函數(shù)為,則對(duì),均有;③若某國(guó)家某年的勞倫茨曲線(xiàn)近似為,則;④若某國(guó)家某年的勞倫茨曲線(xiàn)近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④6.大衍數(shù)列,米源于我國(guó)古代文獻(xiàn)《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國(guó)傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng),都代表太極衍生過(guò)程中,曾經(jīng)經(jīng)歷過(guò)的兩儀數(shù)量總和.已知該數(shù)列前10項(xiàng)是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項(xiàng)的通項(xiàng)公式為()A. B. C. D.7.已知曲線(xiàn),動(dòng)點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)作曲線(xiàn)的兩條切線(xiàn),切點(diǎn)分別為,則直線(xiàn)截圓所得弦長(zhǎng)為()A. B.2 C.4 D.8.已知點(diǎn)為雙曲線(xiàn)的右焦點(diǎn),直線(xiàn)與雙曲線(xiàn)交于A(yíng),B兩點(diǎn),若,則的面積為()A. B. C. D.9.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布,從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機(jī)變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%10.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.11.如圖,在底面邊長(zhǎng)為1,高為2的正四棱柱中,點(diǎn)是平面內(nèi)一點(diǎn),則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.512.已知符號(hào)函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]二、填空題:本題共4小題,每小題5分,共20分。13.下圖是一個(gè)算法流程圖,則輸出的S的值是______.14.如圖,直線(xiàn)平面,垂足為,三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,在平面內(nèi),是直線(xiàn)上的動(dòng)點(diǎn),則點(diǎn)到平面的距離為_(kāi)______,點(diǎn)到直線(xiàn)的距離的最大值為_(kāi)______.15.已知,則______,______.16.設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,,若對(duì)任意都有成立,則的值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若曲線(xiàn)在處的切線(xiàn)為,試求實(shí)數(shù),的值;(2)當(dāng)時(shí),若有兩個(gè)極值點(diǎn),,且,,若不等式恒成立,試求實(shí)數(shù)m的取值范圍.18.(12分)已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求的取值范圍;(2)若函數(shù)在區(qū)間上恰有3個(gè)零點(diǎn),且,求的取值范圍.19.(12分)設(shè)函數(shù)f(x)=x2?4xsinx?4cosx.(1)討論函數(shù)f(x)在[?π,π]上的單調(diào)性;(2)證明:函數(shù)f(x)在R上有且僅有兩個(gè)零點(diǎn).20.(12分)據(jù)《人民網(wǎng)》報(bào)道,美國(guó)國(guó)家航空航天局(NASA)發(fā)文稱(chēng),相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國(guó)和印度的行動(dòng)主導(dǎo)了地球變綠.據(jù)統(tǒng)計(jì),中國(guó)新增綠化面積的來(lái)自于植樹(shù)造林,下表是中國(guó)十個(gè)地區(qū)在去年植樹(shù)造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)單位:公頃地區(qū)造林總面積造林方式人工造林飛播造林新封山育林退化林修復(fù)人工更新內(nèi)蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請(qǐng)根據(jù)上述數(shù)據(jù)分別寫(xiě)出在這十個(gè)地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);(2)在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),求該地區(qū)新封山育林面積占造林總面積的比值超過(guò)的概率;(3)在這十個(gè)地區(qū)中,從退化林修復(fù)面積超過(guò)一萬(wàn)公頃的地區(qū)中,任選兩個(gè)地區(qū),記X為這兩個(gè)地區(qū)中退化林修復(fù)面積超過(guò)六萬(wàn)公頃的地區(qū)的個(gè)數(shù),求X的分布列及數(shù)學(xué)期望.21.(12分)橢圓:的左、右焦點(diǎn)分別是,,離心率為,左、右頂點(diǎn)分別為,.過(guò)且垂直于軸的直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)經(jīng)過(guò)點(diǎn)的直線(xiàn)與橢圓相交于不同的兩點(diǎn)、(不與點(diǎn)、重合),直線(xiàn)與直線(xiàn)相交于點(diǎn),求證:、、三點(diǎn)共線(xiàn).22.(10分)本小題滿(mǎn)分14分)已知曲線(xiàn)的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為(為參數(shù)),求直線(xiàn)被曲線(xiàn)截得的線(xiàn)段的長(zhǎng)度
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)線(xiàn)面平行和面面平行的性質(zhì),可判定A;由線(xiàn)面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項(xiàng)A:若,,根據(jù)線(xiàn)面平行和面面平行的性質(zhì),有或,故A正確;選項(xiàng)B:若,,,由線(xiàn)面平行的判定定理,有,故B正確;選項(xiàng)C:若,,,故,所成的二面角為,則,故C正確;選項(xiàng)D,若,,有可能,故D不正確.故選:D【點(diǎn)睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.2、D【解析】
由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∴,故選:D.【點(diǎn)睛】本小題主要考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.3、C【解析】
根據(jù)線(xiàn)面的位置關(guān)系,結(jié)合線(xiàn)面平行的判定定理、平行線(xiàn)的性質(zhì)進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),也可以滿(mǎn)足∥,b∥,故本命題不正確;B:當(dāng)時(shí),也可以滿(mǎn)足,,故本命題不正確;C:根據(jù)平行線(xiàn)的性質(zhì)可知:當(dāng)∥,,時(shí),能得到,故本命題是正確的;D:當(dāng)時(shí),也可以滿(mǎn)足,b∥,故本命題不正確.故選:C【點(diǎn)睛】本題考查了線(xiàn)面的位置關(guān)系,考查了平行線(xiàn)的性質(zhì),考查了推理論證能力.4、A【解析】
根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問(wèn)題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.5、A【解析】
對(duì)于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國(guó)民分配越公平,所以①正確.對(duì)于②,根據(jù)勞倫茨曲線(xiàn)為一條凹向橫軸的曲線(xiàn),由圖得,均有,可得,所以②錯(cuò)誤.對(duì)于③,因?yàn)椋?,所以③錯(cuò)誤.對(duì)于④,因?yàn)?,所以,所以④正確.故選A.6、B【解析】
直接代入檢驗(yàn),排除其中三個(gè)即可.【詳解】由題意,排除D,,排除A,C.同時(shí)B也滿(mǎn)足,,,故選:B.【點(diǎn)睛】本題考查由數(shù)列的項(xiàng)選擇通項(xiàng)公式,解題時(shí)可代入檢驗(yàn),利用排除法求解.7、C【解析】
設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線(xiàn)斜率,進(jìn)而得到切線(xiàn)方程,將點(diǎn)坐標(biāo)代入切線(xiàn)方程,抽象出直線(xiàn)方程,且過(guò)定點(diǎn)為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過(guò)點(diǎn),所以,即都在直線(xiàn)上,所以直線(xiàn)的方程為,恒過(guò)定點(diǎn),即直線(xiàn)過(guò)圓心,則直線(xiàn)截圓所得弦長(zhǎng)為4.故選:C.【點(diǎn)睛】本題考查直線(xiàn)與圓位置關(guān)系、直線(xiàn)與拋物線(xiàn)位置關(guān)系,拋物線(xiàn)兩切點(diǎn)所在直線(xiàn)求解是解題的關(guān)鍵,屬于中檔題.8、D【解析】
設(shè)雙曲線(xiàn)C的左焦點(diǎn)為,連接,由對(duì)稱(chēng)性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線(xiàn)C的左焦點(diǎn)為,連接,由對(duì)稱(chēng)性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點(diǎn)睛】本題主要考查雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.9、B【解析】試題分析:由題意故選B.考點(diǎn):正態(tài)分布10、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對(duì)流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過(guò)循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問(wèn)題,是求和還是求項(xiàng).11、A【解析】
根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計(jì)算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長(zhǎng)為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點(diǎn)睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.12、A【解析】
根據(jù)符號(hào)函數(shù)的解析式,結(jié)合f(x)的單調(diào)性分析即可得解.【詳解】根據(jù)題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數(shù),當(dāng)x>0時(shí),x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時(shí)sgn[g(x)]=1,當(dāng)x=0時(shí),x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時(shí)sgn[g(x)]=0,當(dāng)x<0時(shí),x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時(shí)sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點(diǎn)睛】此題考查函數(shù)新定義問(wèn)題,涉及函數(shù)單調(diào)性辨析,關(guān)鍵在于讀懂定義,根據(jù)自變量的取值范圍分類(lèi)討論.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)流程圖,運(yùn)行程序即得.【詳解】第一次運(yùn)行,;第二次運(yùn)行,;第三次運(yùn)行,;第四次運(yùn)行;所以輸出的S的值是.故答案為:【點(diǎn)睛】本題考查算法流程圖,是基礎(chǔ)題.14、【解析】
三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點(diǎn)到平面的距離;,可得點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線(xiàn)的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過(guò)和的兩個(gè)平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長(zhǎng)為,則中線(xiàn)長(zhǎng)為,點(diǎn)到平面的距離為,點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線(xiàn)的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過(guò)和的兩個(gè)平行平面間距離加半徑.又三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,以下求過(guò)和的兩個(gè)平行平面間距離,分別取中點(diǎn),連,則,同理,分別過(guò)做,直線(xiàn)確定平面,直線(xiàn)確定平面,則,同理,為所求,,,所以到直線(xiàn)最大距離為.故答案為:;.【點(diǎn)睛】本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.15、【解析】
利用兩角和的正切公式結(jié)合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式結(jié)合弦化切思想求出和的值,進(jìn)而利用兩角差的余弦公式求出的值.【詳解】,,,.故答案為:;.【點(diǎn)睛】本題主要考查三角函數(shù)值的計(jì)算,考查兩角和的正切公式、兩角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的應(yīng)用,難度不大.16、【解析】
由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個(gè)量,計(jì)算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對(duì)應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時(shí),取得最大值,對(duì)任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和最值的計(jì)算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計(jì)算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意,求得的值,根據(jù)切點(diǎn)在切線(xiàn)上以及斜率等于,構(gòu)造方程組求得的值;(2)函數(shù)有兩個(gè)極值點(diǎn),等價(jià)于方程的兩個(gè)正根,,不等式恒成立,等價(jià)于恒成立,,令,求出導(dǎo)數(shù),判斷單調(diào)性,即可得到的范圍,即的范圍.【詳解】(1)由題可知,,,聯(lián)立可得.(2)當(dāng)時(shí),,,有兩個(gè)極值點(diǎn),,且,,是方程的兩個(gè)正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是減函數(shù),,故.【點(diǎn)睛】該題考查的是有關(guān)導(dǎo)數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,函數(shù)的極值點(diǎn)的個(gè)數(shù),構(gòu)造新函數(shù),應(yīng)用導(dǎo)數(shù)研究函數(shù)的值域得到參數(shù)的取值范圍,屬于較難題目.18、(1);(2).【解析】
(1)求出,再求恒成立,以及恒成立時(shí),的取值范圍;(2)由已知,在區(qū)間內(nèi)恰有一個(gè)零點(diǎn),轉(zhuǎn)化為在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),由(1)的結(jié)論對(duì)分類(lèi)討論,根據(jù)單調(diào)性,結(jié)合零點(diǎn)存在性定理,即可求出結(jié)論.【詳解】(1)由題意得,則,當(dāng)函數(shù)在區(qū)間上單調(diào)遞增時(shí),在區(qū)間上恒成立.∴(其中),解得.當(dāng)函數(shù)在區(qū)間上單調(diào)遞減時(shí),在區(qū)間上恒成立,∴(其中),解得.綜上所述,實(shí)數(shù)的取值范圍是.(2).由,知在區(qū)間內(nèi)恰有一個(gè)零點(diǎn),設(shè)該零點(diǎn)為,則在區(qū)間內(nèi)不單調(diào).∴在區(qū)間內(nèi)存在零點(diǎn),同理在區(qū)間內(nèi)存在零點(diǎn).∴在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn).由(1)易知,當(dāng)時(shí),在區(qū)間上單調(diào)遞增,故在區(qū)間內(nèi)至多有一個(gè)零點(diǎn),不合題意.當(dāng)時(shí),在區(qū)間上單調(diào)遞減,故在區(qū)間內(nèi)至多有一個(gè)零點(diǎn),不合題意,∴.令,得,∴函數(shù)在區(qū)間上單凋遞減,在區(qū)間上單調(diào)遞增.記的兩個(gè)零點(diǎn)為,∴,必有.由,得.∴又∵,∴.綜上所述,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、零點(diǎn)問(wèn)題,意在考查直觀(guān)想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.19、見(jiàn)解析【解析】
(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當(dāng)x變化時(shí),f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增所以f(x)在區(qū)間,上單調(diào)遞減,在區(qū)間,上單調(diào)遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個(gè)零點(diǎn).顯然x∈(π,2π)時(shí),?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時(shí),f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒(méi)有零點(diǎn).因?yàn)閒(?x)=(?x)2?4(?x)sin(?x)?4cos(?x)=x2?4xsinx?4cosx=f(x),所以f(x)為偶函數(shù),從而x<?π時(shí),f(x)>1,即f(x)在(?∞,?π)上也沒(méi)有零點(diǎn).故f(x)僅在,上各有一個(gè)零點(diǎn),即f(x)在R上有且僅有兩個(gè)零點(diǎn).20、(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海省;(2);(3)分布列見(jiàn)詳解,數(shù)學(xué)期望為【解析】
(1)通過(guò)數(shù)據(jù)的觀(guān)察以及計(jì)算人工造林面積與造林總面積比值,可得結(jié)果.(2)通過(guò)數(shù)據(jù)的觀(guān)察以及計(jì)算新封山育林面積與造林總面積比值,得出比值超過(guò)的地區(qū)個(gè)數(shù),然后可得結(jié)果.(3)計(jì)算退化林修復(fù)面積超過(guò)一萬(wàn)公頃的地區(qū)中選兩個(gè)地區(qū)總數(shù),退化林修復(fù)面積超過(guò)六萬(wàn)公頃的地區(qū)的個(gè)數(shù)為,列出所有取值并計(jì)算相應(yīng)概率,然后可得結(jié)果.【詳解】(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海省.(2)記事件A:在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),該地區(qū)新封山育林面積占總面積的比值超過(guò)根據(jù)數(shù)據(jù)可知:青海地區(qū)人工造
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度苗木苗圃定向種植與農(nóng)村電商合同范本3篇
- 2025年度高校教師博士后流動(dòng)站合作培養(yǎng)合同
- 2025年度美術(shù)教師職務(wù)聘任合同標(biāo)準(zhǔn)范本
- 2025年度土工布銷(xiāo)售合同-生態(tài)環(huán)保材料供應(yīng)協(xié)議
- 2025年度個(gè)人數(shù)字貨幣交易合同范本4篇
- 2025年度航空貨運(yùn)司機(jī)聘用勞動(dòng)合同范本
- 2025年度食品添加劑行業(yè)配料保密合同協(xié)議書(shū)范本
- 二零二五年度特色農(nóng)業(yè)觀(guān)光園果樹(shù)種植權(quán)轉(zhuǎn)讓合同3篇
- 二零二五年度牛羊肉冷鏈運(yùn)輸車(chē)輛購(gòu)置合同4篇
- 二零二五年度門(mén)面房租賃合同(含市場(chǎng)風(fēng)險(xiǎn)分擔(dān))4篇
- 智能養(yǎng)老院視頻監(jiān)控技術(shù)方案
- 你比我猜題庫(kù)課件
- 體育概論(第二版)課件第三章體育目的
- 無(wú)人駕駛航空器安全操作理論復(fù)習(xí)測(cè)試附答案
- 建筑工地春節(jié)留守人員安全技術(shù)交底
- 默納克-NICE1000技術(shù)交流-V1.0
- 蝴蝶蘭的簡(jiǎn)介
- 老年人心理健康量表(含評(píng)分)
- 《小兒靜脈輸液速度》課件
- 營(yíng)銷(xiāo)人員薪酬標(biāo)準(zhǔn)及績(jī)效考核辦法
- 醫(yī)院每日消防巡查記錄表
評(píng)論
0/150
提交評(píng)論