版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖南省邵東一中振華實(shí)驗(yàn)學(xué)校數(shù)學(xué)高三上期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度,則所得函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心為()A. B. C. D.2.已知集合,則集合的非空子集個(gè)數(shù)是()A.2 B.3 C.7 D.83.函數(shù)()的圖象的大致形狀是()A. B. C. D.4.過(guò)拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為3,且,則拋物線的方程是()A. B. C. D.5.對(duì)于函數(shù),若滿足,則稱(chēng)為函數(shù)的一對(duì)“線性對(duì)稱(chēng)點(diǎn)”.若實(shí)數(shù)與和與為函數(shù)的兩對(duì)“線性對(duì)稱(chēng)點(diǎn)”,則的最大值為()A. B. C. D.6.已知等差數(shù)列的公差不為零,且,,構(gòu)成新的等差數(shù)列,為的前項(xiàng)和,若存在使得,則()A.10 B.11 C.12 D.137.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫(huà)出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為()A. B. C. D.8.已知等差數(shù)列中,則()A.10 B.16 C.20 D.249.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.11.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國(guó)古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”,這可視為中國(guó)古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.12.在中,分別為所對(duì)的邊,若函數(shù)有極值點(diǎn),則的范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線方程是_________.14.等腰直角三角形內(nèi)有一點(diǎn)P,,,,,則面積為_(kāi)_____.15.《易經(jīng)》是中國(guó)傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽(yáng)線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽(yáng)線,四根陰線的概率為_(kāi)______.16.若函數(shù),則__________;__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù),直線與函數(shù)圖象相鄰兩交點(diǎn)的距離為.(Ⅰ)求的值;(Ⅱ)在中,角所對(duì)的邊分別是,若點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心,且,求面積的最大值.18.(12分)年,山東省高考將全面實(shí)行“選”的模式(即:語(yǔ)文、數(shù)學(xué)、外語(yǔ)為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進(jìn)行考試).為了了解學(xué)生對(duì)物理學(xué)科的喜好程度,某高中從高一年級(jí)學(xué)生中隨機(jī)抽取人做調(diào)查.統(tǒng)計(jì)顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認(rèn)為“喜歡物理與性別有關(guān)”;(2)為了了解學(xué)生對(duì)選科的認(rèn)識(shí),年級(jí)決定召開(kāi)學(xué)生座談會(huì).現(xiàn)從名男同學(xué)和名女同學(xué)(其中男女喜歡物理)中,選取名男同學(xué)和名女同學(xué)參加座談會(huì),記參加座談會(huì)的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.19.(12分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個(gè)零點(diǎn),且此時(shí)恒成立,求實(shí)數(shù)m的取值范圍.20.(12分)如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.21.(12分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.22.(10分)已知,,.(1)求的最小值;(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
先化簡(jiǎn)函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對(duì)稱(chēng)性得解.【題目詳解】,
將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,所得函數(shù)的解析式為,
再向右平移個(gè)單位長(zhǎng)度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心為,故選D.【題目點(diǎn)撥】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點(diǎn)之一,經(jīng)常考查定義域、值域、周期性、對(duì)稱(chēng)性、奇偶性、單調(diào)性、最值等,其中公式運(yùn)用及其變形能力、運(yùn)算能力、方程思想等可以在這些問(wèn)題中進(jìn)行體現(xiàn),在復(fù)習(xí)時(shí)要注意基礎(chǔ)知識(shí)的理解與落實(shí).三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時(shí)要抓住函數(shù)解析式這個(gè)關(guān)鍵,在函數(shù)解析式較為復(fù)雜時(shí)要注意使用三角恒等變換公式把函數(shù)解析式化為一個(gè)角的一個(gè)三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.2、C【解題分析】
先確定集合中元素,可得非空子集個(gè)數(shù).【題目詳解】由題意,共3個(gè)元素,其子集個(gè)數(shù)為,非空子集有7個(gè).故選:C.【題目點(diǎn)撥】本題考查集合的概念,考查子集的概念,含有個(gè)元素的集合其子集個(gè)數(shù)為,非空子集有個(gè).3、C【解題分析】
對(duì)x分類(lèi)討論,去掉絕對(duì)值,即可作出圖象.【題目詳解】故選C.【題目點(diǎn)撥】識(shí)圖常用的方法(1)定性分析法:通過(guò)對(duì)問(wèn)題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢(shì),利用這一特征分析解決問(wèn)題;(2)定量計(jì)算法:通過(guò)定量的計(jì)算來(lái)分析解決問(wèn)題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來(lái)分析解決問(wèn)題.4、B【解題分析】
利用拋物線的定義可得,,把線段AB中點(diǎn)的橫坐標(biāo)為3,代入可得p值,然后可得出拋物線的方程.【題目詳解】設(shè)拋物線的焦點(diǎn)為F,設(shè)點(diǎn),由拋物線的定義可知,線段AB中點(diǎn)的橫坐標(biāo)為3,又,,可得,所以拋物線方程為.故選:B.【題目點(diǎn)撥】本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.5、D【解題分析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【題目詳解】依題意知,與為函數(shù)的“線性對(duì)稱(chēng)點(diǎn)”,所以,故(當(dāng)且僅當(dāng)時(shí)取等號(hào)).又與為函數(shù)的“線性對(duì)稱(chēng)點(diǎn),所以,所以,從而的最大值為.故選:D.【題目點(diǎn)撥】本題以新定義為背景,考查指數(shù)函數(shù)的運(yùn)算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.6、D【解題分析】
利用等差數(shù)列的通項(xiàng)公式可得,再利用等差數(shù)列的前項(xiàng)和公式即可求解.【題目詳解】由,,構(gòu)成等差數(shù)列可得即又解得:又所以時(shí),.故選:D【題目點(diǎn)撥】本題考查了等差數(shù)列的通項(xiàng)公式、等差數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.7、B【解題分析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【題目詳解】解:分析題意可知,如下圖所示,該幾何體為一個(gè)正方體中的三棱錐,最大面的表面邊長(zhǎng)為的等邊三角形,故其面積為,故選B.【題目點(diǎn)撥】本題考查了幾何體的三視圖問(wèn)題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問(wèn)題.8、C【解題分析】
根據(jù)等差數(shù)列性質(zhì)得到,再計(jì)算得到答案.【題目詳解】已知等差數(shù)列中,故答案選C【題目點(diǎn)撥】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的常考題型.9、C【解題分析】所對(duì)應(yīng)的點(diǎn)為(-1,-2)位于第三象限.【考點(diǎn)定位】本題只考查了復(fù)平面的概念,屬于簡(jiǎn)單題.10、C【解題分析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.11、A【解題分析】
設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【題目詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【題目點(diǎn)撥】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.12、D【解題分析】試題分析:由已知可得有兩個(gè)不等實(shí)根.考點(diǎn):1、余弦定理;2、函數(shù)的極值.【方法點(diǎn)晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個(gè)不等實(shí)根,從而可得.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
利用導(dǎo)數(shù)的運(yùn)算法則求出導(dǎo)函數(shù),再利用導(dǎo)數(shù)的幾何意義即可求解.【題目詳解】求導(dǎo)得,所以,所以切線方程為故答案為:【題目點(diǎn)撥】本題考查了基本初等函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的運(yùn)算法則以及導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.14、【解題分析】
利用余弦定理計(jì)算,然后根據(jù)平方關(guān)系以及三角形面積公式,可得結(jié)果.【題目詳解】設(shè)由題可知:由,,,所以化簡(jiǎn)可得:則或,即或由,所以所以故答案為:【題目點(diǎn)撥】本題主要考查余弦定理解三角形,仔細(xì)觀察,細(xì)心計(jì)算,屬基礎(chǔ)題.15、【解題分析】
觀察八卦中陰線和陽(yáng)線的情況為3線全為陽(yáng)線或全為陰線各一個(gè),還有6個(gè)是1陰2陽(yáng)和1陽(yáng)2陰各3個(gè)。抽取的兩卦中共2陽(yáng)4陰的所有可能情況是一卦全陰、另一卦2陽(yáng)1陰,或兩卦全是1陽(yáng)2陰?!绢}目詳解】八卦中陰線和陽(yáng)線的情況為3線全為陽(yáng)線的一個(gè),全為陰線的一個(gè),1陰2陽(yáng)的3個(gè),1陽(yáng)2陰的3個(gè)。抽取的兩卦中共2陽(yáng)4陰的所有可能情況是一卦全陰、另一卦2陽(yáng)1陰,或兩卦全是1陽(yáng)2陰?!鄰?個(gè)卦中任取2卦,共有種可能,兩卦中共2陽(yáng)4陰的情況有,所求概率為。故答案為:?!绢}目點(diǎn)撥】本題考查古典概型,解題關(guān)鍵是確定基本事件的個(gè)數(shù)。本題不能受八卦影響,我們關(guān)心的是八卦中陰線和陽(yáng)線的條數(shù),這樣才能正確地確定基本事件的個(gè)數(shù)。16、01【解題分析】
根據(jù)分段函數(shù)解析式,代入即可求解.【題目詳解】函數(shù),所以,.故答案為:0;1.【題目點(diǎn)撥】本題考查了分段函數(shù)求值的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)3;(Ⅱ).【解題分析】
(Ⅰ)函數(shù),利用和差公式和倍角公式,化簡(jiǎn)即可求得;(Ⅱ)由(Ⅰ)知函數(shù),根據(jù)點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心,代入可得,利用余弦定理、基本不等式的性質(zhì)即可得出.【題目詳解】(Ⅰ)的最大值為最小正周期為(Ⅱ)由題意及(Ⅰ)知,,故故的面積的最大值為.【題目點(diǎn)撥】本題考查三角函數(shù)的和差公式、倍角公式、三角函數(shù)的圖象與性質(zhì)、余弦定理、基本不等式的性質(zhì),考查理解辨析能力與運(yùn)算求解能力,屬于中檔基礎(chǔ)題.18、(1)有的把握認(rèn)為喜歡物理與性別有關(guān);(2)分布列見(jiàn)解析,.【解題分析】
(1)根據(jù)題目所給信息,列出列聯(lián)表,計(jì)算的觀測(cè)值,對(duì)照臨界值表可得出結(jié)論;(2)設(shè)參加座談會(huì)的人中喜歡物理的男同學(xué)有人,女同學(xué)有人,則,確定的所有取值為、、、、.根據(jù)計(jì)數(shù)原理計(jì)算出每個(gè)所對(duì)應(yīng)的概率,列出分布列計(jì)算期望即可.【題目詳解】(1)根據(jù)所給條件得列聯(lián)表如下:男女合計(jì)喜歡物理不喜歡物理合計(jì),所以有的把握認(rèn)為喜歡物理與性別有關(guān);(2)設(shè)參加座談會(huì)的人中喜歡物理的男同學(xué)有人,女同學(xué)有人,則,由題意可知,的所有可能取值為、、、、.,,,,.所以的分布列為:所以.【題目點(diǎn)撥】本題考查了獨(dú)立性檢驗(yàn)、離散型隨機(jī)變量的概率分布列.離散型隨機(jī)變量的期望.屬于中等題.19、(1)時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2).【解題分析】
(1)求出導(dǎo)函數(shù),分類(lèi)討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結(jié)論.【題目詳解】(1)函數(shù)定義域是,,當(dāng)時(shí),,單調(diào)遞增;時(shí),令得,時(shí),,遞減,時(shí),,遞增,綜上所述,時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2)易知,由函數(shù)單調(diào)性,若有唯一零點(diǎn),則或.當(dāng)時(shí),,,從而只需時(shí),恒成立,即,令,,在上遞減,在上遞增,∴,從而.時(shí),,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.【題目點(diǎn)撥】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)零點(diǎn)個(gè)數(shù)與不等式恒成立問(wèn)題,解題關(guān)鍵在于轉(zhuǎn)化,不等式恒成立問(wèn)題通常轉(zhuǎn)化為求函數(shù)的最值.這又可通過(guò)導(dǎo)數(shù)求解.20、(1)證明見(jiàn)解析(2)【解題分析】
(1)根據(jù)線面垂直的性質(zhì)定理,可得DE//BF,然后根據(jù)勾股定理計(jì)算可得BF=DE,最后利用線面平行的判定定理,可得結(jié)果.(2)利用建系的方法,可得平面ABF的一個(gè)法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關(guān)系,可得結(jié)果.【題目詳解】(1)因?yàn)镈E⊥平面ABCD,所以DEAD,因?yàn)锳D=4,AE=5,DE=3,同理BF=3,又DE⊥平面ABCD,BF⊥平面ABCD,所以D
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 年終工作總結(jié)個(gè)人報(bào)告(10篇)
- 中專(zhuān)自我鑒定合集15篇
- 標(biāo)準(zhǔn)設(shè)備購(gòu)買(mǎi)合同
- 西安邁科商業(yè)中心連體超高層結(jié)構(gòu)設(shè)計(jì)-龍輝元張曉宇王福安
- 師德師風(fēng)個(gè)人學(xué)習(xí)心得范文
- 班級(jí)建設(shè)目標(biāo)
- 2023六年級(jí)語(yǔ)文上冊(cè) 第八單元 28 有的人-紀(jì)念魯迅有感教學(xué)實(shí)錄新人教版
- 簡(jiǎn)愛(ài)讀后感10篇【100-1000字】
- 教師的辭職報(bào)告15篇
- 餐廳服務(wù)員辭職申請(qǐng)書(shū)集錦6篇
- 吊車(chē)裝吊籃施工方案
- 小紅書(shū)代運(yùn)營(yíng)協(xié)議模板
- 山東省濟(jì)南市濟(jì)鋼高級(jí)中學(xué)2025屆物理高一上期末檢測(cè)試題含解析
- 07FG01防空地下室設(shè)計(jì)荷載及結(jié)構(gòu)構(gòu)造
- 湖南省益陽(yáng)市2023-2024學(xué)年高二上學(xué)期普通高中期末質(zhì)量檢測(cè)數(shù)學(xué)試題 含解析
- 2024年保安員證考試題庫(kù)及答案(共250題)
- 天津市七區(qū)2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試卷(原卷)
- 2024-2025學(xué)年高中英語(yǔ)選擇性必修 第二冊(cè)北師大版(2019)教學(xué)設(shè)計(jì)合集
- 北京市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)6
- 2024秋期國(guó)家開(kāi)放大學(xué)《當(dāng)代中國(guó)政治制度》一平臺(tái)在線形考(任務(wù)一至四)試題及答案
- 電大專(zhuān)科【計(jì)算機(jī)組網(wǎng)技術(shù)】機(jī)考網(wǎng)考形考題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論