甘肅省天水市第三中學(xué)2024年高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁(yè)
甘肅省天水市第三中學(xué)2024年高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁(yè)
甘肅省天水市第三中學(xué)2024年高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁(yè)
甘肅省天水市第三中學(xué)2024年高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁(yè)
甘肅省天水市第三中學(xué)2024年高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

甘肅省天水市第三中學(xué)2024年高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.復(fù)數(shù)滿(mǎn)足(為虛數(shù)單位),則的值是()A. B. C. D.3.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.4.如果,那么下列不等式成立的是()A. B.C. D.5.已知三棱錐的外接球半徑為2,且球心為線(xiàn)段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.6.下圖是來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.7.直線(xiàn)x-3y+3=0經(jīng)過(guò)橢圓x2a2+y2bA.3-1 B.3-12 C.8.已知雙曲線(xiàn):,,為其左、右焦點(diǎn),直線(xiàn)過(guò)右焦點(diǎn),與雙曲線(xiàn)的右支交于,兩點(diǎn),且點(diǎn)在軸上方,若,則直線(xiàn)的斜率為()A. B. C. D.9.集合,,則=()A. B.C. D.10.已知向量,,若,則()A. B. C. D.11.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫(xiě)成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問(wèn)題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國(guó)數(shù)學(xué)家潘承洞、王元、陳景潤(rùn)等在哥德巴赫猜想的證明中做出相當(dāng)好的成績(jī).若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.12.已知一個(gè)三棱錐的三視圖如圖所示,其中三視圖的長(zhǎng)、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)與軸及直線(xiàn)=所圍成的三角形面積為,則實(shí)數(shù)=____。14.已知集合,,則____________.15.已知不等式組所表示的平面區(qū)域?yàn)?,則區(qū)域的外接圓的面積為_(kāi)_____.16.點(diǎn)在雙曲線(xiàn)的右支上,其左、右焦點(diǎn)分別為、,直線(xiàn)與以坐標(biāo)原點(diǎn)為圓心、為半徑的圓相切于點(diǎn),線(xiàn)段的垂直平分線(xiàn)恰好過(guò)點(diǎn),則該雙曲線(xiàn)的漸近線(xiàn)的斜率為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷(xiāo)海外.近年來(lái)某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷(xiāo)合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率為,且各手工藝品質(zhì)量是否過(guò)關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級(jí)的概率;(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷(xiāo),且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷(xiāo),利潤(rùn)記為100元.①求10件手工藝品中不能外銷(xiāo)的手工藝品最有可能是多少件;②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.18.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.19.(12分)若數(shù)列前n項(xiàng)和為,且滿(mǎn)足(t為常數(shù),且)(1)求數(shù)列的通項(xiàng)公式:(2)設(shè),且數(shù)列為等比數(shù)列,令,.求證:.20.(12分)已知函數(shù),.(1)當(dāng)時(shí),求不等式的解集;(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞增區(qū)間(2)記函數(shù)的圖象為曲線(xiàn),設(shè)點(diǎn)是曲線(xiàn)上不同兩點(diǎn),如果在曲線(xiàn)上存在點(diǎn),使得①;②曲線(xiàn)在點(diǎn)M處的切線(xiàn)平行于直線(xiàn)AB,則稱(chēng)函數(shù)存在“中值和諧切線(xiàn)”,當(dāng)時(shí),函數(shù)是否存在“中值和諧切線(xiàn)”請(qǐng)說(shuō)明理由22.(10分)已知數(shù)列滿(mǎn)足對(duì)任意都有,其前項(xiàng)和為,且是與的等比中項(xiàng),.(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列滿(mǎn)足,,設(shè)數(shù)列的前項(xiàng)和為,求大于的最小的正整數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】

化簡(jiǎn)復(fù)數(shù)為、的形式,可以確定對(duì)應(yīng)的點(diǎn)位于的象限.【題目詳解】解:復(fù)數(shù)故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為位于第三象限故選:.【題目點(diǎn)撥】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.2、C【解題分析】

直接利用復(fù)數(shù)的除法的運(yùn)算法則化簡(jiǎn)求解即可.【題目詳解】由得:本題正確選項(xiàng):【題目點(diǎn)撥】本題考查復(fù)數(shù)的除法的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.3、D【解題分析】

根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【題目詳解】解:根據(jù)題意,函數(shù),其導(dǎo)數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【題目點(diǎn)撥】本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.4、D【解題分析】

利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【題目詳解】∵,∴,,,.故選:D.【題目點(diǎn)撥】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.5、C【解題分析】

由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿(mǎn)足,結(jié)合幾何關(guān)系和圖形即可求解【題目詳解】先畫(huà)出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【題目點(diǎn)撥】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問(wèn)題,屬于基礎(chǔ)題6、D【解題分析】

根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進(jìn)而求得所求表達(dá)式的值.【題目詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【題目點(diǎn)撥】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查二倍角公式,屬于基礎(chǔ)題.7、A【解題分析】

由直線(xiàn)x-3y+3=0過(guò)橢圓的左焦點(diǎn)F,得到左焦點(diǎn)為再由FC=2CA,求得A3【題目詳解】由題意,直線(xiàn)x-3y+3=0經(jīng)過(guò)橢圓的左焦點(diǎn)F,令所以c=3,即橢圓的左焦點(diǎn)為F(-3,0)直線(xiàn)交y軸于C(0,1),所以,OF=因?yàn)镕C=2CA,所以FA=3又由點(diǎn)A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【題目點(diǎn)撥】本題考查了橢圓的幾何性質(zhì)——離心率的求解,其中求橢圓的離心率(或范圍),常見(jiàn)有兩種方法:①求出a,c,代入公式e=ca;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,轉(zhuǎn)化為a,c的齊次式,然后轉(zhuǎn)化為關(guān)于e的方程,即可得8、D【解題分析】

由|AF2|=3|BF2|,可得.設(shè)直線(xiàn)l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線(xiàn)l與曲線(xiàn)C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線(xiàn)的斜率.【題目詳解】雙曲線(xiàn)C:,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),則F2(,0),設(shè)直線(xiàn)l的方程x=my+,m>0,∵雙曲線(xiàn)的漸近線(xiàn)方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線(xiàn)的斜率為,故選D.【題目點(diǎn)撥】本題考查直線(xiàn)與雙曲線(xiàn)的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識(shí),屬于中檔題.9、C【解題分析】

先化簡(jiǎn)集合A,B,結(jié)合并集計(jì)算方法,求解,即可.【題目詳解】解得集合,所以,故選C.【題目點(diǎn)撥】本道題考查了集合的運(yùn)算,考查了一元二次不等式解法,關(guān)鍵化簡(jiǎn)集合A,B,難度較?。?0、A【解題分析】

利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【題目詳解】由題意得,,,,解得.故選A.【題目點(diǎn)撥】本題考查向量平行定理,考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.11、A【解題分析】

列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【題目詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【題目點(diǎn)撥】本題主要考查了古典概型,基本事件,屬于容易題.12、B【解題分析】

根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長(zhǎng)方體,于是得到三棱錐的外接球即為長(zhǎng)方體的外接球,進(jìn)而得到外接球的半徑,求得外接球的面積后可求出最小值.【題目詳解】由已知條件及三視圖得,此三棱錐的四個(gè)頂點(diǎn)位于長(zhǎng)方體的四個(gè)頂點(diǎn),即為三棱錐,且長(zhǎng)方體的長(zhǎng)、寬、高分別為,∴此三棱錐的外接球即為長(zhǎng)方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當(dāng)且僅當(dāng),時(shí),三棱錐外接球的表面積取得最小值為.故選B.【題目點(diǎn)撥】(1)解決關(guān)于外接球的問(wèn)題的關(guān)鍵是抓住外接的特點(diǎn),即球心到多面體的頂點(diǎn)的距離都等于球的半徑,同時(shí)要作一圓面起襯托作用.(2)長(zhǎng)方體的外接球的直徑即為長(zhǎng)方體的體對(duì)角線(xiàn),對(duì)于一些比較特殊的三棱錐,在研究其外接球的問(wèn)題時(shí)可考慮通過(guò)構(gòu)造長(zhǎng)方體,通過(guò)長(zhǎng)方體的外球球來(lái)研究三棱錐的外接球的問(wèn)題.二、填空題:本題共4小題,每小題5分,共20分。13、或1【解題分析】

利用導(dǎo)數(shù)的幾何意義,可得切線(xiàn)的斜率,以及切線(xiàn)方程,求得切線(xiàn)與軸和的交點(diǎn),由三角形的面積公式可得所求值.【題目詳解】的導(dǎo)數(shù)為,可得切線(xiàn)的斜率為3,切線(xiàn)方程為,可得,可得切線(xiàn)與軸的交點(diǎn)為,,切線(xiàn)與的交點(diǎn)為,可得,解得或。【題目點(diǎn)撥】本題主要考查利用導(dǎo)數(shù)求切線(xiàn)方程,以及直線(xiàn)方程的運(yùn)用,三角形的面積求法。14、【解題分析】

由于,,則.15、【解題分析】

先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【題目詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【題目點(diǎn)撥】線(xiàn)性規(guī)劃問(wèn)題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開(kāi)放區(qū)域、分界線(xiàn)是實(shí)線(xiàn)還是虛線(xiàn),其次確定目標(biāo)函數(shù)的幾何意義,是求直線(xiàn)的截距、兩點(diǎn)間距離的平方、直線(xiàn)的斜率、還是點(diǎn)到直線(xiàn)的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.16、【解題分析】如圖,是切點(diǎn),是的中點(diǎn),因?yàn)?,所以,又,所以,,又,根?jù)雙曲線(xiàn)的定義,有,即,兩邊平方并化簡(jiǎn)得,所以,因此.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)①2②期望值為X900600300100P【解題分析】

(1)一件手工藝品質(zhì)量為B級(jí)的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級(jí)的概率為,設(shè)10件手工藝品中不能外銷(xiāo)的手工藝品可能是件,則,則,.由得,所以當(dāng)時(shí),,即,由得,所以當(dāng)時(shí),,所以當(dāng)時(shí),最大,即10件手工藝品中不能外銷(xiāo)的手工藝品最有可能是2件.②由上可得一件手工藝品質(zhì)量為A級(jí)的概率為,一件手工藝品質(zhì)量為B級(jí)的概率為,一件手工藝品質(zhì)量為C級(jí)的概率為,一件手工藝品質(zhì)量為D級(jí)的概率為,所以X的分布列為X900600300100P則期望為.18、(Ⅰ)(Ⅱ)(2,+∞)【解題分析】試題分析:(Ⅰ)由題意零點(diǎn)分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數(shù)為為,求解不等式可得實(shí)數(shù)a的取值范圍為試題解析:(I)當(dāng)時(shí),化為,當(dāng)時(shí),不等式化為,無(wú)解;當(dāng)時(shí),不等式化為,解得;當(dāng)時(shí),不等式化為,解得.所以的解集為.(II)由題設(shè)可得,所以函數(shù)的圖像與x軸圍成的三角形的三個(gè)頂點(diǎn)分別為,,,的面積為.由題設(shè)得,故.所以a的取值范圍為19、(1)(2)詳見(jiàn)解析【解題分析】

(1)利用可得的遞推關(guān)系,從而可求其通項(xiàng).(2)由為等比數(shù)列可得,從而可得的通項(xiàng),利用錯(cuò)位相減法可得的前項(xiàng)和,利用不等式的性質(zhì)可證.【題目詳解】(1)由題意,得:(t為常數(shù),且),當(dāng)時(shí),得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化簡(jiǎn)得到,所以或(舍).所以,,則.設(shè)的前n項(xiàng)和為.則,相減可得【題目點(diǎn)撥】數(shù)列的通項(xiàng)與前項(xiàng)和的關(guān)系式,我們常利用這個(gè)關(guān)系式實(shí)現(xiàn)與之間的相互轉(zhuǎn)化.數(shù)列求和關(guān)鍵看通項(xiàng)的結(jié)構(gòu)形式,如果通項(xiàng)是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項(xiàng)是等差數(shù)列與等比數(shù)列的乘積,則用錯(cuò)位相減法;如果通項(xiàng)可以拆成一個(gè)數(shù)列連續(xù)兩項(xiàng)的差,那么用裂項(xiàng)相消法;如果通項(xiàng)的符號(hào)有規(guī)律的出現(xiàn),則用并項(xiàng)求和法.20、(1)(2)【解題分析】

(1)當(dāng)時(shí),,當(dāng)或時(shí),,所以可轉(zhuǎn)化為,解得,所以不等式的解集為.(2)因?yàn)?,所以,所以,即,即.?dāng)時(shí),因?yàn)?,所以,不符合題意.當(dāng)時(shí),解可得,因?yàn)楫?dāng)時(shí),不等式恒成立,所以,所以,解得,所以實(shí)數(shù)的取值范圍為.21、(1)見(jiàn)解析(2)不存在,見(jiàn)解析【解題分析】

(1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的導(dǎo)數(shù),結(jié)合導(dǎo)數(shù)的幾何意義,再令,轉(zhuǎn)化為方程有解問(wèn)題,即可說(shuō)明.【題目詳解】(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論