![2021-2022學(xué)年河南省信陽市慈濟中學(xué)高三數(shù)學(xué)文聯(lián)考試題含解析_第1頁](http://file4.renrendoc.com/view/5365c6b2b66511f43fad27944bc13f8d/5365c6b2b66511f43fad27944bc13f8d1.gif)
![2021-2022學(xué)年河南省信陽市慈濟中學(xué)高三數(shù)學(xué)文聯(lián)考試題含解析_第2頁](http://file4.renrendoc.com/view/5365c6b2b66511f43fad27944bc13f8d/5365c6b2b66511f43fad27944bc13f8d2.gif)
![2021-2022學(xué)年河南省信陽市慈濟中學(xué)高三數(shù)學(xué)文聯(lián)考試題含解析_第3頁](http://file4.renrendoc.com/view/5365c6b2b66511f43fad27944bc13f8d/5365c6b2b66511f43fad27944bc13f8d3.gif)
![2021-2022學(xué)年河南省信陽市慈濟中學(xué)高三數(shù)學(xué)文聯(lián)考試題含解析_第4頁](http://file4.renrendoc.com/view/5365c6b2b66511f43fad27944bc13f8d/5365c6b2b66511f43fad27944bc13f8d4.gif)
![2021-2022學(xué)年河南省信陽市慈濟中學(xué)高三數(shù)學(xué)文聯(lián)考試題含解析_第5頁](http://file4.renrendoc.com/view/5365c6b2b66511f43fad27944bc13f8d/5365c6b2b66511f43fad27944bc13f8d5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022學(xué)年河南省信陽市慈濟中學(xué)高三數(shù)學(xué)文聯(lián)考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.閱讀下邊的程序框圖,運行相應(yīng)的程序,則輸出i的值為()A.2 B.3 C.4 D.5參考答案:C由程序框圖可知:故選C.考點:本題主要考查程序框圖及學(xué)生分析問題解決問題的能力.2.已知正項數(shù)列{an}的前n項的乘積等于Tn=(n∈N*),bn=log2an,則數(shù)列{bn}的前n項和Sn中最大值是(
) A.S6 B.S5 C.S4 D.S3參考答案:D考點:數(shù)列的求和.專題:計算題.分析:由已知,探求{an}的性質(zhì),再去研究數(shù)列{bn}的性質(zhì),繼而解決Sn中最大值.解答: 解:由已知當(dāng)n=1時,a1=T1=,當(dāng)n≥2時,an==,n=1時也適合上式,數(shù)列{an}的通項公式為an=∴bn=log2an=14﹣4n,數(shù)列{bn}是以10為首項,以﹣4為公差的等差數(shù)列.=﹣2n2+12n=﹣2[(n﹣3)2﹣9],當(dāng)n=3時取得最大值.故選D點評:本題主要考查了等差數(shù)列的判定,前n項公式,考查了學(xué)生對基礎(chǔ)知識的綜合運用.體現(xiàn)了函數(shù)思想的應(yīng)用.3.在圓x2+y2=5x內(nèi),過點有n條弦的長度成等差數(shù)列,最小弦長為數(shù)列的首項a1,最大弦長為an,若公差,那么n的取值集合為
(
)A.{4,5,6,7}
B.{4,5,6}
C.{3,4,5,6}
D.{3,4,5}參考答案:A4.若,當(dāng),時,,若在區(qū)間,內(nèi)有兩個零點,則實數(shù)的取值范圍是A.
B.
C.
D.參考答案:B略5.由函數(shù)和直線x=1,所圍成的圖形的面積等于
(
) A.
B. C.
D.參考答案:B略6.已知F為雙曲線C:(a>0,b>0)的右焦點,l1,l2為C的兩條漸近線,點A在l1上,且FA⊥l1,點B在l2上,且FB∥l1,若|FA|=|FB|,則雙曲線C的離心率為()A.或 B.或C.D.參考答案:A【考點】雙曲線的簡單性質(zhì).【分析】求出|FA|,|FB|,利用|FA|=|FB|,建立方程,即可求出雙曲線C的離心率.【解答】解:由題意,l1:y=x,l2:y=﹣x,F(xiàn)(c,0)∴|FA|==b.FB的方程為y=(x﹣c),與l2:y=﹣x聯(lián)立,可得B(,﹣),∴|FB|==,∵|FA|=|FB|,∴b=?,∴2c2=5ab,∴4c4=25a2(c2﹣a2),∴4e4﹣25e2+25=0,∴e=或,故選A.【點評】本題考查雙曲線的方程和性質(zhì),主要考查雙曲線的漸近線方程和離心率的求法,屬于中檔題.7.已知拋物線的方程為,焦點為F,O為坐標(biāo)原點,A是該拋物線上一點,與軸的正方向的夾角為,若的面積為,則的值為(
)
A.2
B.
C.2或
D.2或參考答案:A8.設(shè),且為正實數(shù),則2
1
0
參考答案:9.已知集合A={x∈N|1<x<lnk},集合A中至少有3個元素,則()A.k>e3 B.k≥e3 C.k>e4 D.k≥e4參考答案:C【考點】元素與集合關(guān)系的判斷.【分析】首先確定集合A,由此得到lnk>4,由此求得k的取值范圍.【解答】解:∵集合A={x∈N|1<x<lnk},集合A中至少有3個元素,∴A={2,3,4,…},∴l(xiāng)nk>4,∴k>e4.故選:C.10.如圖,在等腰梯形ABCD中,下底BC長為3,底角C為,高為a,E為上底AD的中點,P為折線段C-D-A上的動點,設(shè)的最小值為,若關(guān)于a的方程有兩個不相等的實根,則實數(shù)的取值范圍為(
)
.A.
B.
C.
D.參考答案:A二、填空題:本大題共7小題,每小題4分,共28分11.設(shè)二項式的展開式的各項系數(shù)之和為,所有二項式系數(shù)的和為,若,則等于
.參考答案:答案:412.已知拋物線y2=2px(p>0)的焦點為F,A是拋物線上一點,直線OA的斜率為(O為坐標(biāo)原點),且A到F的距離為3,則p=
.參考答案:2【考點】拋物線的簡單性質(zhì).【專題】計算題;圓錐曲線的定義、性質(zhì)與方程.【分析】設(shè)A(a,b),則有=,即b=a,代入拋物線方程可得p=a,又由A到F的距離為3,得a+=3,即可解得答案.【解答】解:設(shè)A(a,b),則有=,即b=a,∴(a)2=2pa,可得p=a,又∵a+=3,∴p=2.故答案為:2.【點評】本題考查的知識點是拋物線的簡單性質(zhì),其中根據(jù)已知A到F的距離為3,得到a+=3是解答的關(guān)鍵.13.在平行四邊形中,若,,則=
.參考答案:414.設(shè)是異面直線,給出下列四個命題:①存在平面,使;②存在惟一平面,使與距離相等;③空間存在直線,使上任一點到距離相等;④夾在異面直線間的三條異面線段的中點不能共線.其中正確命題的個數(shù)有.參考答案:答案:①②③15.已知圓與直線相切,則
參考答案:【知識點】直線與圓位置關(guān)系H43解析:因為圓的方程為,則有,解得a=3.【思路點撥】可利用圓心到直線的距離等于圓的半徑得到關(guān)于a的方程,求解即可.16.已知曲線,則過點的切線方程是______________參考答案:答案:17.已知,,則_____________.參考答案:【測量目標(biāo)】數(shù)學(xué)基本知識和基本技能/理解或掌握初等數(shù)學(xué)中有關(guān)函數(shù)與分析的基本知識.【知識內(nèi)容】函數(shù)與分析/三角比/二倍角及半角的正弦、余弦、正切.【試題分析】由得,,所以,因為,所以,,又,故答案為.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本小題滿分14分)已知函數(shù)處取得極值。
(1)求實數(shù)a的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程在區(qū)間(0,2)有兩個不等實根,求實數(shù)b的取值范圍。參考答案:(本小題滿分14分)
解:(1)由已知得
(2)由(1)得
由,由
的單調(diào)遞增區(qū)間為(—1,0),單調(diào)遞減區(qū)間為(3)令則令(舍),當(dāng)時,當(dāng)上遞增,在(1,2)上遞減方程上有兩個不等實根等價于函數(shù)在(0,2)上有兩個不同的零點。即實數(shù)b的取值范圍為略19.(12分)已知α為第三象限角,且f(α)=.(1)化簡f(α);(2)若cos(α﹣)=,求f(α)的值;(3)若α=﹣1860°,求f(α)的值.參考答案:考點: 三角函數(shù)的化簡求值;運用誘導(dǎo)公式化簡求值.專題: 三角函數(shù)的求值.分析: (1)利用誘導(dǎo)公式可化簡f(α)=﹣cosα;(2)當(dāng)cos(α﹣)=﹣sinα═時,刻求f(α)的值;(3)若α=﹣1860°,利用誘導(dǎo)公式易求f(α)的值.解答: 解:(1)f(α)==﹣cosα;(2)∵cos(α﹣)=﹣sinα=,α為第三象限角,∴f(α)=﹣cosα==;(3)若α=﹣1860°,則f(α)=﹣cos(﹣1860°)=﹣cos(﹣60°)=﹣.點評: 本題考查運用誘導(dǎo)公式化簡求值,屬于基礎(chǔ)題.20.(本小題滿分14分)
已知四棱錐的正視圖是一個底邊長為、腰長為的等腰三角形,圖4、圖5分別是四棱錐的側(cè)視圖和俯視圖.(1)求證:;(2)求四棱錐的側(cè)面的面積.參考答案:(本小題主要考查空間線面位置關(guān)系、三視圖、幾何體的側(cè)面積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運算求解能力)(1)證明:依題意,可知點在平面上的正射影是線段的中點,連接,
則平面.
……………2分
∵平面,
∴.
……………3分
∵,平面,平面,
∴平面.
……………5分
∵平面,
∴.
……………6分(2)解:依題意,在等腰三角形中,,,
在Rt△中,,……………7分
過作,垂足為,連接,∵平面,平面,∴.
……………8分∵平面,平面,,∴平面.
……………9分∵平面,∴.
……………10分依題意得.
……………11分在Rt△中,,
……………12分∴△的面積為.∴四棱錐的側(cè)面的面積為.
……………14分21.已知拋物線的焦點在拋物線上,點P是拋物線C1上的動點.(1)求拋物線C1的方程及其準(zhǔn)線方程;(2)過點P作拋物線C2的兩條切線,A、B分別為兩個切點,求△PAB面積的最小值.參考答案:(Ⅰ)的方程為其準(zhǔn)線方程為.…………4分(Ⅱ)設(shè),,,則切線的方程:,即,又,所以,……………6分同理切線的方程為,又和都過點,所以,所以直線的方程為.………………8分聯(lián)立得,所以。所以.點到直線的距離.所以的面積………………10分所以當(dāng)時,取最小值為。即面積的最小值為2.……………12分22.(12分)把圓周分成四等分,A是其中一個分點,動點P在四個分點上按逆時針方向前進(jìn).現(xiàn)在投擲一個質(zhì)地均勻的正四面體,它的四個面上分別寫有1、2、3、4四個數(shù)字.P從A點出發(fā),按照正四面體底面上數(shù)字前進(jìn)幾個分點,轉(zhuǎn)一周之前連續(xù)投擲.(1)求點P恰好返回A點的概率;(2)在點P轉(zhuǎn)一周恰能返回A點的所有結(jié)果中,用隨機變量表示點P能返回A點的投擲次數(shù),求的分布列和期望.參考答案:解析:(1)解:投擲一次正四面體,底面上每個數(shù)字的出現(xiàn)都是等可能的,概率為,則:
①若投擲一次能返回A點,則底面數(shù)字應(yīng)為4,此時概率.…2分
②若投擲二次能返回A點,則底面數(shù)字依次為(1,3),(3,1),(2,2)三種結(jié)果,其概率為.……
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇科版數(shù)學(xué)八年級下冊《9.5 三角形的中位線》聽評課記錄
- 青島版數(shù)學(xué)八年級上冊2.6《等腰三角形》聽評課記錄2
- 湘教版數(shù)學(xué)八年級上冊1.4《分式的加法和減法》聽評課記錄6
- 2025年金屬冶煉加工合作協(xié)議書
- 小學(xué)二年級數(shù)學(xué)口算訓(xùn)練題
- 幼兒籃球周末培訓(xùn)班合作協(xié)議書范本
- 外貿(mào)公司用工勞動合同范本
- 租賃安全協(xié)議書范本
- 二零二五年度智慧城市軟件外包合作協(xié)議
- 2025年度雞蛋電商平臺合作協(xié)議模板帶數(shù)據(jù)共享與平臺運營
- 我的消防文員職業(yè)規(guī)劃
- 人教PEP版2025年春季小學(xué)英語三年級下冊教學(xué)計劃
- 2025年公司品質(zhì)部部門工作計劃
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項考試題庫
- 華為研發(fā)部門績效考核制度及方案
- CSC資助出國博士聯(lián)合培養(yǎng)研修計劃英文-research-plan
- 《環(huán)境管理學(xué)》教案
- 2025年蛇年年度營銷日歷營銷建議【2025營銷日歷】
- (一模)寧波市2024學(xué)年第一學(xué)期高考模擬考試 數(shù)學(xué)試卷(含答案)
- 攝影入門課程-攝影基礎(chǔ)與技巧全面解析
- 冀少版小學(xué)二年級下冊音樂教案
評論
0/150
提交評論