版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
北京市牛欄山一中2024年數(shù)學(xué)高二上期末綜合測試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若復(fù)數(shù),則()A B.C. D.2.已知平面直角坐標(biāo)系內(nèi)一動(dòng)點(diǎn)P,滿足圓上存在一點(diǎn)Q使得,則所有滿足條件的點(diǎn)P構(gòu)成圖形的面積為()A. B.C. D.3.函數(shù)是偶函數(shù)且在上單調(diào)遞減,,則的解集為()A. B.C. D.4.下列命題中正確的是A.命題“若,則”的否命題為:“若,則”B.若命題,是假命題,則實(shí)數(shù)C.“”的一個(gè)充分不必要條件是“”D.命題“若,則”的逆否命題為真命題5.設(shè)函數(shù)是定義在上的奇函數(shù),且,當(dāng)時(shí),有恒成立.則不等式的解集為()A. B.C. D.6.等差數(shù)列x,,,…的第四項(xiàng)為()A.5 B.6C.7 D.87.下列命題正確的是()A經(jīng)過三點(diǎn)確定一個(gè)平面B.經(jīng)過一條直線和一個(gè)點(diǎn)確定一個(gè)平面C.四邊形確定一個(gè)平面D.兩兩相交且不共點(diǎn)的三條直線確定一個(gè)平面8.青花瓷是中華陶瓷燒制工藝的珍品,也是中國瓷器的主流品種之一.如圖,是一青花瓷花瓶,其外形上下對(duì)稱,可看成是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所形成的曲面.若該花瓶的瓶口直徑為瓶身最小直徑的2倍,花瓶恰好能放入與其等高的正方體包裝箱內(nèi),則雙曲線的離心率為()A. B.C. D.9.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的可能為()A.9 B.5C.4 D.310.中國大運(yùn)河項(xiàng)目成功人選世界文化遺產(chǎn)名錄,成為中國第46個(gè)世界遺產(chǎn)項(xiàng)目,隨著對(duì)大運(yùn)河的保護(hù)與開發(fā),大運(yùn)河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團(tuán)乘游船從奧體公園碼頭出發(fā)順流而下至漕運(yùn)碼頭,又立即逆水返回奧體公園碼頭,已知游船在順?biāo)械乃俣葹?,在逆水中的速度為,則游船此次行程的平均速度V與的大小關(guān)系是()A. B.C. D.11.已知函數(shù)的導(dǎo)數(shù)為,則等于()A.0 B.1C.2 D.412.已知拋物線:的焦點(diǎn)為F,準(zhǔn)線l上有兩點(diǎn)A,B,若為等腰直角三角形且面積為8,則拋物線C的標(biāo)準(zhǔn)方程是()A. B.C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.若,是雙曲線與橢圓的共同焦點(diǎn),點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且為等腰三角形,則該雙曲線的漸近線為______14.已知平面的一個(gè)法向量為,點(diǎn)為內(nèi)一點(diǎn),則點(diǎn)到平面的距離為___________.15.函數(shù),則函數(shù)在處切線的斜率為_______________.16.已知數(shù)列滿足,,則_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,面ABCD,,且,,,,,N為PD的中點(diǎn).(1)求證:平面PBC;(2)在線段PD上是否存在一點(diǎn)M,使得直線CM與平面PBC所成角的正弦值是.若存在,求出的值,若不存在,說明理由.18.(12分)如圖,四棱錐中,底面是邊長為2的正方形,,,且,為的中點(diǎn)(1)求平面與平面夾角的余弦值;(2)在線段上是否存在點(diǎn),使得點(diǎn)到平面的距離為?若存在,確定點(diǎn)的位置;若不存在,請說明理由19.(12分)如圖,在長方體中,,,是棱的中點(diǎn)(1)求證:;(2)求平面與平面夾角的余弦值;(3)在棱上是否存在一點(diǎn),使得與平面所成角的正弦值為,若存在,求出的長;若不存在,請說明理由20.(12分)如圖,正方體的棱長為4,E,F(xiàn)分別是上的點(diǎn),且.(1)求與平面所成角的正切值;(2)求證:.21.(12分)已知函數(shù),,其中.(1)試討論函數(shù)的單調(diào)性;(2)若,證明:.22.(10分)已知函數(shù),其中常數(shù),(1)求單調(diào)區(qū)間;(2)若且對(duì)任意,都有,證明:方程有且只有兩個(gè)實(shí)根
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】根據(jù)復(fù)數(shù)的乘法運(yùn)算即可求解.【題目詳解】由,故選:A2、D【解題分析】先找臨界情況當(dāng)PQ與圓C相切時(shí),,進(jìn)而可得滿足條件的點(diǎn)P形成的圖形為大圓(包括內(nèi)部),即求.【題目詳解】當(dāng)PQ與圓C相切時(shí),,這種情況為臨界情況,當(dāng)P往外時(shí)無法找到點(diǎn)Q使,當(dāng)P往里時(shí),可以找到Q使,故滿足條件的點(diǎn)P形成的圖形為大圓(包括內(nèi)部),如圖,由圓,可知圓心,半徑為1,則大圓的半徑為,∴所有滿足條件的點(diǎn)P構(gòu)成圖形的面積為.故選:D.【題目點(diǎn)撥】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是找出臨界情況時(shí)點(diǎn)所滿足的條件,進(jìn)而即可得到動(dòng)點(diǎn)滿足條件的圖形,問題即可解決.3、D【解題分析】分析可知函數(shù)在上為增函數(shù),且有,將所求不等式變形為,可得出關(guān)于實(shí)數(shù)的不等式,由此可解得實(shí)數(shù)的取值范圍.【題目詳解】因?yàn)楹瘮?shù)是偶函數(shù)且在上單調(diào)遞減,則該函數(shù)在上為增函數(shù),且,由可得,所以,,可得或,解得或.因此,不等式的解集為.故選:D.4、C【解題分析】.命題的否定是同時(shí)否定條件和結(jié)論;.將當(dāng)成真命題解出的范圍,再取補(bǔ)集即可;.求出“”的充要條件再判斷即可;.判斷原命題的真假即可【題目詳解】解:對(duì)于A:命題“若,則”的否命題為:“若,則“,故A錯(cuò)誤;對(duì)于B:當(dāng)命題,是真命題時(shí),,所以,又因?yàn)槊}為假命題,所以,故B錯(cuò)誤;對(duì)于C:由“”解得:,故“”是“”的充分不必要條件,故C正確;對(duì)于D:因?yàn)槊}“若,則”是假命題,所以其逆否命題也是假命題,故D錯(cuò)誤;故選:C5、B【解題分析】根據(jù)當(dāng)時(shí),可知在上單調(diào)遞減,結(jié)合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結(jié)果.【題目詳解】,當(dāng)時(shí),,在上單調(diào)遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當(dāng)時(shí),,不合題意;綜上所述:的解集為.故選:.【題目點(diǎn)撥】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題,關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式,確定所構(gòu)造函數(shù)的單調(diào)性和奇偶性,進(jìn)而根據(jù)零點(diǎn)確定不等式的解集.6、A【解題分析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項(xiàng).【題目詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項(xiàng)為-1+(4-1)×2=5.故選:A.7、D【解題分析】由平面的基本性質(zhì)結(jié)合公理即可判斷.【題目詳解】對(duì)于A,過不在一條直線上三點(diǎn)才能確定一個(gè)平面,故A不正確;對(duì)于B,經(jīng)過一條直線和直線外一個(gè)點(diǎn)確定一個(gè)平面,故B不正確;對(duì)于C,空間四邊形不能確定一個(gè)平面,故C不正確;對(duì)于D,兩兩相交且不共點(diǎn)的三條直線確定一個(gè)平面,故D正確.故選:D8、C【解題分析】由題意作出軸截面,最短直徑為2a,根據(jù)已知條件點(diǎn)(2a,2a)在雙曲線上,代入雙曲線的標(biāo)準(zhǔn)方程,結(jié)合a,b,c的關(guān)系可求得離心率e的值【題目詳解】由題意作出軸截面如圖:M點(diǎn)是雙曲線與截面正方形的交點(diǎn)之一,設(shè)雙曲線的方程為:最短瓶口直徑為A1A2=2a,則由已知可得M是雙曲線上的點(diǎn),且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化簡后得,解得故選:C9、D【解題分析】根據(jù)輸出結(jié)果可得輸出時(shí),結(jié)合執(zhí)行邏輯確定輸入k的可能值,即可知答案.【題目詳解】由,得,則輸人的可能為.∴結(jié)合選項(xiàng)知:D符合要求.故選:D.10、A【解題分析】求出平均速度V,進(jìn)而結(jié)合基本不等式求得答案.【題目詳解】易知,設(shè)奧運(yùn)公園碼頭到漕運(yùn)碼頭之間的距離為1,則游船順流而下的時(shí)間為,逆流而上的時(shí)間為,則平均速度,由基本不等式可得,而,當(dāng)且僅當(dāng)時(shí),兩個(gè)不等式都取得“=”,而根據(jù)題意,于是.故選:A.11、A【解題分析】先對(duì)函數(shù)求導(dǎo),然后代值計(jì)算即可【題目詳解】因?yàn)?,所?故選:A12、C【解題分析】分或()兩種情況討論,由面積列方程即可求解【題目詳解】由題意得,當(dāng)時(shí),,解得;當(dāng)或時(shí),,解得,所以拋物線的方程是或.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】根據(jù)給定條件求出兩曲線的共同焦點(diǎn),再由橢圓、雙曲線定義求出a,b即可計(jì)算作答.【題目詳解】橢圓的焦點(diǎn),由橢圓、雙曲線的對(duì)稱性不妨令點(diǎn)P在第一象限,因?yàn)榈妊切?,由橢圓的定義知:,則,,由雙曲線定義知:,即,,,所以雙曲線的漸近線為:.故答案為:【題目點(diǎn)撥】易錯(cuò)點(diǎn)睛:雙曲線(a>0,b>0)漸近線方程為,而雙曲線(a>0,b>0)的漸近線方程為(即),應(yīng)注意其區(qū)別與聯(lián)系.14、1【解題分析】利用空間向量求點(diǎn)到平面的距離即可.【題目詳解】,,∴則點(diǎn)P到平面的距離為.故答案為:1.15、【解題分析】根據(jù)導(dǎo)數(shù)的幾何意義求解即可.【題目詳解】解:因?yàn)椋?,所以,所以函?shù)在處切線的斜率為故答案為:16、【解題分析】由題設(shè)可得,應(yīng)用累加法有,結(jié)合已知即可求.【題目詳解】由題設(shè),,所以,又,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)存在,且【解題分析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)設(shè),利用直線與平面所成角的正弦值列方程,化簡求得.【小問1詳解】設(shè)是的中點(diǎn),連接,由于,所以四邊形是矩形,所以,由于平面,所以,以為空間坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,,設(shè)平面的法向量為,則,故可設(shè).,且平面,所以平面.【小問2詳解】,設(shè),則,,,設(shè)直線與平面所成角為,則,,兩邊平方并化簡得,解得或(舍去).所以存在,使直線與平面所成角的正弦值是,且.18、(1)(2)存在,點(diǎn)為線段的靠近點(diǎn)的三等分點(diǎn)【解題分析】(1)根據(jù)題意證得平面,進(jìn)而證得平面,得到平面,以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,求得平面和平面的法向量,結(jié)合向量的夾角公式,即可求解;(2)設(shè)點(diǎn),求得平面的法向量為,結(jié)合向量的距離公式列出方程,求得的值,即可得到答案.【小問1詳解】解:因?yàn)樗倪呅螢檎叫?,則,,由,,,所以平面,因?yàn)槠矫?,所以,又由,,,所以平面,又因?yàn)槠矫妫?,因?yàn)榍移矫?,所以平面,由平面,且,不妨以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,如圖所示,則,,,,可得,,,設(shè)平面的法向量為,則,取,可得,所以,易得平面的法向量為,則,由平面與平面夾角為銳角,所以平面與平面夾角的余弦值【小問2詳解】解:設(shè)點(diǎn),可得,,設(shè)平面的法向量為,則,取,可得,所以,所以點(diǎn)到平面的距離為,解得,即或因?yàn)椋怨十?dāng)點(diǎn)為線段的靠近點(diǎn)的三等分點(diǎn)時(shí),點(diǎn)到平面的距離為.19、(1)證明見解析(2)(3)存點(diǎn),【解題分析】(1)先證明平面,由平面,可證明結(jié)論.(2)以分別為軸,建立空間直角坐標(biāo)系,分別求出平面與平面的法向量,利用向量法求求解即可.(3)設(shè),,則,則由向量法結(jié)合條件可得答案.【題目詳解】(1)在長方體中,,又,所以平面又平面,所以.(2)以分別為軸,建立空間直角坐標(biāo)系因?yàn)?,,是棱的中點(diǎn)則則為平面的一個(gè)法向量.設(shè)為平面的一個(gè)法向量.,所以,即取,可得所以如圖平面與平面夾角為銳角,所以平面與平面夾角的余弦值為.(3)設(shè),,則由(2)平面的一個(gè)法向量設(shè)與平面所成角為則解得,取所以存在點(diǎn),滿足條件.20、(1);(2)證明見解析.【解題分析】(1)在正方體中,平面,連接,則為與平面所成的角,在直角三角形,求出即可;(2)∵是正方體,又是空間垂直問題,∴易采用向量法,∴建立如圖所示的空間直角坐標(biāo)系,欲證,只須證,再用向量數(shù)量積公式求解即可.【小問1詳解】在正方體中,平面,連接,則為與平面所成的角,又,,,∴;【小問2詳解】如圖,以為坐標(biāo)原點(diǎn),直線、、分別軸、軸、軸,建立空間直角坐標(biāo)系.則∴,,∴,∴.21、(1)答案見解析(2)證明見解析【解題分析】(1)先求出函數(shù)的定義域,然后求導(dǎo),再根據(jù)導(dǎo)數(shù)的正負(fù)求出函數(shù)的單調(diào)區(qū)間,(2)要證,只要證,由于時(shí),,當(dāng)時(shí),令,再利用導(dǎo)數(shù)求出其最小值大于零即可【小問1詳解】的定義域?yàn)楫?dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),令,解得;令,解得;綜上所述:當(dāng)時(shí),在上單調(diào)遞增,無減區(qū)間;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】,,即證:,即證:當(dāng)時(shí),,,當(dāng)時(shí),令,則在上單調(diào)遞增在上單調(diào)遞增綜上所述:,即22、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廠房施工設(shè)備租賃與維護(hù)合同集4篇
- 二零二五年度綠色生態(tài)農(nóng)業(yè)房地產(chǎn)開發(fā)轉(zhuǎn)讓合同樣本3篇
- 二零二五年建筑廢棄物再生利用協(xié)議3篇
- 二零二五年叉車租賃與智能調(diào)度系統(tǒng)合同4篇
- 2025年航空航天項(xiàng)目建議書咨詢合同3篇
- 往年的小升初滿分作文(合集4篇)
- 二零二五年度股份回購與職工持股計(jì)劃試點(diǎn)合同3篇
- 2025年度茶葉產(chǎn)品質(zhì)量檢測與認(rèn)證服務(wù)合同4篇
- 2025年度歷史文化名城保護(hù)拆遷補(bǔ)償協(xié)議書7篇
- 二零二五年度農(nóng)業(yè)科技項(xiàng)目合同履約擔(dān)保書4篇
- 三清三關(guān)消防知識(shí)
- 資本金管理制度文件模板
- 2025年生產(chǎn)主管年度工作計(jì)劃
- 2025年急診科護(hù)理工作計(jì)劃
- 高中家長會(huì) 高二寒假線上家長會(huì)課件
- 違規(guī)行為與處罰管理制度
- 個(gè)人教師述職報(bào)告錦集10篇
- 四川省等八省2025年普通高中學(xué)業(yè)水平選擇性考試適應(yīng)性演練歷史試題(含答案)
- 《內(nèi)部培訓(xùn)師培訓(xùn)》課件
- 《雷達(dá)原理》課件-3.3.3教學(xué)課件:相控陣?yán)走_(dá)
- 西方史學(xué)史課件3教學(xué)
評(píng)論
0/150
提交評(píng)論