日喀則市重點(diǎn)中學(xué)2024年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第1頁
日喀則市重點(diǎn)中學(xué)2024年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第2頁
日喀則市重點(diǎn)中學(xué)2024年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第3頁
日喀則市重點(diǎn)中學(xué)2024年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第4頁
日喀則市重點(diǎn)中學(xué)2024年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

日喀則市重點(diǎn)中學(xué)2024年數(shù)學(xué)高二上期末統(tǒng)考模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)集合,則AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}2.設(shè)實(shí)數(shù)x,y滿足,則目標(biāo)函數(shù)的最大值是()A. B.C.16 D.323.在等比數(shù)列中,,,則等于()A. B.5C. D.94.4位同學(xué)報(bào)名參加四個(gè)課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有()A.24種 B.81種C.64種 D.256種5.拋物線的準(zhǔn)線方程為()A B.C. D.6.已知函數(shù)在上是增函數(shù),則實(shí)數(shù)的取值范圍是()A. B.C. D.7.已知向量,,若與共線,則實(shí)數(shù)值為()A. B.C.1 D.28.已知分別是等差數(shù)列的前項(xiàng)和,且,則()A. B.C. D.9.學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n位同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在(單位:元)內(nèi),其中支出在(單位:元)內(nèi)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為()A.100 B.120C.130 D.39010.正方體的棱長為,為側(cè)面內(nèi)動(dòng)點(diǎn),且滿足,則△面積的最小值為()A. B.C. D.11.等差數(shù)列的公差,且,,則的通項(xiàng)公式是()A. B.C. D.12.從編號(hào)為1~120的商品中利用系統(tǒng)抽樣的方法抽8件進(jìn)行質(zhì)檢,若所抽樣本中含有編號(hào)66的商品,則下列編號(hào)一定被抽到的是()A.111 B.52C.37 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,則圓心坐標(biāo)為______.14.已知橢圓的左、右焦點(diǎn)分別為,,為橢圓上一點(diǎn),垂直于軸,且為等腰三角形,則橢圓的離心率為__________15.與雙曲線有共同的漸近線,并且經(jīng)過點(diǎn)的雙曲線方程是______16.直線與圓相交于兩點(diǎn)M,N,若滿足,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前項(xiàng)的和為,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),記數(shù)列的前項(xiàng)和,求使得恒成立時(shí)的最小正整數(shù).18.(12分)記為等差數(shù)列的前n項(xiàng)和,已知.(1)求的通項(xiàng)公式;(2)求的最小值.19.(12分)如圖1,在邊長為4的等邊三角形ABC中,D,E,F(xiàn)分別是AB,AC,BC的中點(diǎn),沿DE把折起,得到如圖2所示的四棱錐.(1)證明:平面.(2)若二面角的大小為60°,求平面與平面的夾角的大小.20.(12分)已知拋物線C:()的焦點(diǎn)為F,原點(diǎn)O關(guān)于點(diǎn)F的對(duì)稱點(diǎn)為Q,點(diǎn)關(guān)于點(diǎn)Q的對(duì)稱點(diǎn),也在拋物線C上(1)求p的值;(2)設(shè)直線l交拋物線C于不同兩點(diǎn)A、B,直線、與拋物線C的另一個(gè)交點(diǎn)分別為M、N,,,且,求直線l的橫截距的最大值.21.(12分)已知的展開式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大(1)求n的值;(2)求展開式中含的項(xiàng)22.(10分)已知,兩地的距離是.根據(jù)交通法規(guī),,兩地之間的公路車速(單位:)應(yīng)滿足.假設(shè)油價(jià)是7元/,以的速度行駛時(shí),汽車的耗油率為,當(dāng)車速為時(shí),汽車每小時(shí)耗油,司機(jī)每小時(shí)的工資是91元.(1)求的值;(2)如果不考慮其他費(fèi)用,當(dāng)車速是多少時(shí),這次行車的總費(fèi)用最低?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】按交集定義求解即可.【題目詳解】AB={2,3}故選:B2、C【解題分析】求的最大值即求的最大值,根據(jù)約束條件畫出可行域,將目標(biāo)函數(shù)看成直線,直線經(jīng)過可行域內(nèi)的點(diǎn),將目標(biāo)與直線的截距建立聯(lián)系,然后得到何時(shí)目標(biāo)值取得要求的最值,進(jìn)而求得的最大值,最后求出的最大值.【題目詳解】要求的最大值即求的最大值.根據(jù)實(shí)數(shù),滿足的條件作出可行域,如圖.將目標(biāo)函數(shù)化為.則表示直線在軸上的截距的相反數(shù).要求的最大值,即求直線在軸上的截距最小值.如圖當(dāng)直線過點(diǎn)時(shí),在軸上的截距最小值.由,解得所以的最大值為,則的最大值為16.故選:C.3、D【解題分析】由等比數(shù)列的項(xiàng)求公比,進(jìn)而求即可.【題目詳解】由題設(shè),,∴故選:D4、D【解題分析】利用分步乘法計(jì)數(shù)原理進(jìn)行計(jì)算.【題目詳解】每位同學(xué)均有四種選擇,故不同的報(bào)名方法有種.故選:D5、D【解題分析】根據(jù)拋物線方程求出,進(jìn)而可得焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程.【題目詳解】由可得,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為:,故選:D.6、A【解題分析】由題意可知,對(duì)任意的恒成立,可得出對(duì)任意的恒成立,利用基本不等式可求得實(shí)數(shù)的取值范圍.【題目詳解】因?yàn)?,則,由題意可知,對(duì)任意的恒成立,所以,對(duì)任意的恒成立,由基本不等式可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,.故選:A.7、D【解題分析】根據(jù)空間向量共線有,,結(jié)合向量的坐標(biāo)即可求的值.【題目詳解】由題設(shè),有,,則,可得.故選:D8、D【解題分析】利用及等差數(shù)列的性質(zhì)進(jìn)行求解.【題目詳解】分別是等差數(shù)列的前項(xiàng)和,故,且,故,故選:D9、A【解題分析】根據(jù)小矩形的面積之和,算出位于10~30的2組數(shù)的頻率之和為0.33,從而得到位于30~50的數(shù)據(jù)的頻率之和為1-0.33=0.67,再由頻率計(jì)算公式即可算出樣本容量的值.【題目詳解】位于10~20、20~30的小矩形的面積分別為位于10~20、20~30的據(jù)的頻率分別為0.1、0.23可得位于10~30的前3組數(shù)的頻率之和為0.1+0.23=0.33由此可得位于30~50數(shù)據(jù)的頻率之和為1-0.33=0.67∵支出在[30,50)的同學(xué)有67人,即位于30~50的頻數(shù)為67,∴根據(jù)頻率計(jì)算公式,可得解之得.故選:A10、B【解題分析】建立空間直角坐標(biāo)系如圖所示,設(shè)由,得出點(diǎn)的軌跡方程,由幾何性質(zhì)求得,再根據(jù)垂直關(guān)系求出△面積的最小值【題目詳解】以點(diǎn)為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,如圖所示:則,,設(shè)所以,得,所以因?yàn)槠矫妫怨省髅娣e的最小值為故選:B11、C【解題分析】由于數(shù)列為等差數(shù)列,所以,再由可得可以看成一元二次方程的兩個(gè)根,由可知,所以,從而可求出,可得到通項(xiàng)公式.【題目詳解】解:因?yàn)閿?shù)列為等差數(shù)列,所以,因?yàn)?,所以可以看成一元二次方程的兩個(gè)根,因?yàn)?,所以,所以,解得,所以故選:C【題目點(diǎn)撥】此題考查的是等差數(shù)列的通項(xiàng)公式和性質(zhì),屬于基礎(chǔ)題.12、A【解題分析】先求出等距抽樣的組距,從而得到被抽到的是,從而求出答案.【題目詳解】120件商品中抽8件,故,因?yàn)楹芯幪?hào)66的商品被抽到,故其他能被抽到的是,當(dāng)時(shí),,其他三個(gè)選項(xiàng)均不合要求,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】將圓的一般方程配方程標(biāo)準(zhǔn)方程即可.【題目詳解】圓,即,它的圓心坐標(biāo)是.故答案為:.14、.【解題分析】通過垂直于軸,可以求出,由已知為等腰三角形,可以得到,結(jié)合關(guān)系,可以得到一個(gè)關(guān)于離心率的一元二次方程,解方程求出離心率.【題目詳解】∵垂直于,∴可得,又∵為等腰三角形,∴,即,整理得,解得.【題目點(diǎn)撥】本題考查了求橢圓離心率問題,關(guān)鍵是通過已知條件構(gòu)造出關(guān)于離心率的方程.15、【解題分析】設(shè)雙曲線的方程為,將點(diǎn)代入方程可求的值,從而可得結(jié)果【題目詳解】設(shè)與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經(jīng)過點(diǎn),所求的雙曲線方程為:,整理得故答案為【題目點(diǎn)撥】本題考查雙曲線的方程與簡單性質(zhì),意在考查靈活應(yīng)用所學(xué)知識(shí)解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設(shè)為,只需根據(jù)已知條件求出即可.16、【解題分析】由點(diǎn)到直線的距離公式,結(jié)合已知可得圓心到直線的距離,再由圓的弦長公式可得,然后可解.【題目詳解】因?yàn)?,所以,所以,圓心到直線的距離因?yàn)?,所以,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)1【解題分析】(1)先設(shè)設(shè)等差數(shù)列的公差為,由,列出方程組求出首項(xiàng)和公差即可;(2)由(1)先求出,再由裂項(xiàng)相消法求數(shù)列的前項(xiàng)和即可.【題目詳解】解:(1)設(shè)等差數(shù)列的公差為,因?yàn)?,,所以解得所以?shù)列的通項(xiàng)公式為.(2)由(1)可知∴,∴,∴,∴的最小正整數(shù)為1【題目點(diǎn)撥】本題主要考查等差數(shù)列的通項(xiàng)公式,以及裂項(xiàng)相消法求數(shù)列前項(xiàng)和的問題,熟記公式即可,屬于基礎(chǔ)題型.18、(1)(2)【解題分析】(1)設(shè)數(shù)列的公差為d,由,利用等差數(shù)列的前n項(xiàng)和公式求解;(2)利用等差數(shù)列的前n項(xiàng)和公式結(jié)合二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設(shè)數(shù)列的公差為d,∵,∴,解得2,∴.【小問2詳解】由(1)知2,∴,,,∴當(dāng)時(shí),取得最小值-16.19、(1)證明見解析;(2).【解題分析】(1)由結(jié)合線面平行的判定即可推理作答.(2)取DE的中點(diǎn)M,連接,F(xiàn)M,證明平面平面,再建立空間直角坐標(biāo)系,借助空間向量推理、計(jì)算作答.【小問1詳解】在中,因?yàn)镋,F(xiàn)分別是AC,BC的中點(diǎn),所以,則圖2中,,而平面,平面,所以平面.【小問2詳解】依題意,是正三角形,四邊形是菱形,取DE的中點(diǎn)M,連接,F(xiàn)M,如圖,則,,即是二面角的平面角,,取中點(diǎn)N,連接,則有,在中,由余弦定理得:,于是有,,即,而,,,平面,則平面,又平面,從而有平面平面,因平面平面,平面,因此,平面,過點(diǎn)N作,則兩兩垂直,以點(diǎn)N為原點(diǎn),射線分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)平面的法向量,則,令,得,設(shè)平面的法向量,則,令,得,顯然有,即,所以平面與平面的夾角為.【題目點(diǎn)撥】方法點(diǎn)睛:利用向量法求二面角:(1)找法向量,分別求出兩個(gè)半平面所在平面的法向量,然后求得法向量的夾角,結(jié)合圖形得到二面角的大小;(2)找與交線垂直的直線的方向向量,分別在二面角的兩個(gè)半平面內(nèi)找到與交線垂直且以垂足為起點(diǎn)的直線的方向向量,則這兩個(gè)向量的夾角就是二面角的平面角20、(1);(2)最大橫截距為.【解題分析】(1)首先寫出的坐標(biāo),根據(jù)對(duì)稱關(guān)系求出的坐標(biāo),帶入即可求出.(2)設(shè)直線l的方程為,帶入拋物線方程利用韋達(dá)定理,計(jì)算出直線l的橫截距的表達(dá)式從而求出其最大值.【題目詳解】(1)由題知,,故,代入C的方程得,∴;(2)設(shè)直線l的方程為,與拋物線C:聯(lián)立得,由題知,可設(shè)方程兩根為,,則,,(*)由得,∴,,又點(diǎn)M在拋物線C上,∴,化簡得,由題知M,A為不同兩點(diǎn),故,,即,同理可得,∴,將(*)式代入得,即,將其代入解得,∴在時(shí)取得最大值,即直線l的最大橫截距為.21、(1)10;(2);【解題分析】(1)利用二項(xiàng)式系數(shù)的性質(zhì)即可求出的值;(2)求出展開式的通項(xiàng)公式,然后令的指數(shù)為即可求解【小問1詳解】∵的展開式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,∴展開后一共有11項(xiàng),則,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論