組合 市賽獲獎_第1頁
組合 市賽獲獎_第2頁
組合 市賽獲獎_第3頁
組合 市賽獲獎_第4頁
組合 市賽獲獎_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1.2.1組合問題一:從甲、乙、丙3名同學中選出2名去參加某天的一項活動,其中1名同學參加上午的活動,1名同學參加下午的活動,有多少種不同的選法?問題二:從甲、乙、丙3名同學中選出2名去參加某天一項活動,有多少種不同的選法?甲、乙;甲、丙;乙、丙

3情境創(chuàng)設組合定義:

一般地,從n個不同元素中取出m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合.排列定義:一般地,從n個不同元素中取出m(m≤n)

個元素,按照一定的順序排成一列,叫做從

n個不同元素中取出

m個元素的一個排列.概念講解組合和排列有什么共同和不同點?判斷下列問題是組合問題還是排列問題?

(1)設集合A={a,b,c,d,e},則集合A的含有3個元素的子集有多少個?(2)某鐵路線上有5個車站,則這條鐵路線上共需準備多少種車票?有多少種不同的火車票價?組合問題排列問題(3)10名同學分成人數(shù)相同的數(shù)學和英語兩個學習小組,共有多少種分法?組合問題(4)10人聚會,見面后每兩人之間要握手相互問候,共需握手多少次?組合問題(5)從4個風景點中選出2個游覽,有多少種不同的方法?組合問題(6)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?排列問題組合問題組合是選擇的結(jié)果,排列是選擇后再排序的結(jié)果.1.從a,b,c三個不同的元素中取出兩個元素的所有組合分別是:ab,ac,bc

2.已知4個元素a,b,c,d

,寫出每次取出兩個元素的所有組合.abcd

b

cd

cd

ab,ac,ad,bc,bd,cd(3個)(6個)概念理解從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號表示.概念講解組合數(shù):組合排列abcabdacdbcdabcbaccabacbbcacbaabdbaddabadbbdadbaacdcaddacadccdadcabcdcbddbcbdccdbdcb(1)寫出從a,b,c,d

四個元素中任取三個元素的組合數(shù)。(2)寫出從a,b,c,d四個元素中任取三個元素的排列數(shù)。這里,且,這個公式叫做組合數(shù)公式.

組合數(shù)公式:概念講解問題1

計算猜想問題2猜想mnmnmnCCC11+-=+問題3、一個口袋內(nèi)裝有7個不同的白球和1個黑球.(1)從口袋內(nèi)取出3個球,共有多少種取法?(2)從口袋內(nèi)取出3個球,其中含有1個黑球,共有多少種取法?(3)從口袋內(nèi)取出3個球,沒有黑球,共有多少種不同的取法?mnmnmnCCC11+-=+組合數(shù)的兩個性質(zhì)性質(zhì)1mnnmnCC-=性質(zhì)2mnmnmnCCC11+-=+規(guī)定:10=nC注:1

公式特征

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論