




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
使用導(dǎo)數(shù)的最優(yōu)化方法演示文稿當(dāng)前第1頁\共有73頁\編于星期二\2點優(yōu)選使用導(dǎo)數(shù)的最優(yōu)化方法當(dāng)前第2頁\共有73頁\編于星期二\2點一.無約束最優(yōu)化問題
無約束非線性規(guī)劃問題的求解方法分為解析法和直接法兩類。解析法需要計算函數(shù)的梯度,利用函數(shù)的解析性質(zhì)構(gòu)造迭代公式使之收斂到最優(yōu)解。本節(jié)介紹最速下降法、共軛梯度法、牛頓法、變尺度法等解析方法
直接法僅通過比較目標函數(shù)值的大小來移動迭代點。下一章主要介紹模式搜索法等直接方法。當(dāng)前第3頁\共有73頁\編于星期二\2點
無約束非線性規(guī)劃問題的求解方法分為解析法和直接法兩類。
一般來說,無約束非線性規(guī)劃問題的求解是通過一系列一維搜索來實現(xiàn)。因此,如何選擇搜索方向是解無約束非線性規(guī)劃問題的核心問題,搜索方向的不同選擇,形成不同的求解方法。本章主要介紹解析法;另一類只用到目標函數(shù)值,不必計算導(dǎo)數(shù),通常稱為直接方法,放在第11章討論.當(dāng)前第4頁\共有73頁\編于星期二\2點本章考慮如下的下降算法:主要介紹最速下降法、牛頓法,共軛梯度法,擬牛頓法等當(dāng)前第5頁\共有73頁\編于星期二\2點10.1最速下降法10.1.1最速下降方向
考慮無約束問題(6.1.2)其中函數(shù)具有一階連續(xù)偏導(dǎo)數(shù).
人們在處理這類問題時,總希望從某一點出發(fā),選擇一個目標函數(shù)值下降最快的方向,以利于盡快達到極小點.正是基于這樣一種愿望,早在1847年法國著名數(shù)學(xué)家Cauchy提出了最速下降法.后來,Curry等人作了進一步的研究.現(xiàn)在最速下降法已經(jīng)成為眾所周知的一種最基本的算法,它對其他算法的研究也很有啟發(fā)作用,因此在最優(yōu)化方法中占有重要地位.下面我們先來討論怎樣選擇最速下降方向.
當(dāng)前第6頁\共有73頁\編于星期二\2點人們在處理這類問題時,總希望從某一點出發(fā),選擇一個目標函數(shù)值下降最快的方向,以利于盡快達到極小點.正是基于這樣一種愿望,早在1847年法國著名數(shù)學(xué)家Cauchy提出了最速下降法.后來,Curry等人作了進一步的研究.現(xiàn)在最速下降法已經(jīng)成為眾所周知的一種最基本的算法,它對其他算法的研究也很有啟發(fā)作用,因此在最優(yōu)化方法中占有重要地位.下面我們先來討論怎樣選擇最速下降方向.
我們知道,函數(shù)在點處沿方向的變化率可用方向?qū)?shù)來表達,對于可微函數(shù),方向?qū)?shù)等于梯度與方向的內(nèi)積,即(6.1.2)因此,求函數(shù)在點處的下降最快的方向,可歸結(jié)為求解下列非線性規(guī)劃:(6.1.3)當(dāng)前第7頁\共有73頁\編于星期二\2點根據(jù)Schwartz不等式,有去掉絕對值符號,可以得到(6.1.4)由上式可知,當(dāng)(6.1.5)時等號成立.因此,在點處沿(6.1.5)所定義的方向變化率最小,即負梯度方向為最速下降方向.
這里要特別指出,在不同尺度下最速下降方向是不同的.前面定義的最速下降方向,是在向量的毆氏范數(shù)不大于1的限制得到的,屬于毆氏度量意義下的最速下降方向.如果改用其他度量,比當(dāng)前第8頁\共有73頁\編于星期二\2點如,設(shè)為對稱正定矩陣,在向量的范數(shù)不大于1的限制下,極小化,則得到的最速下降方向與前者不同.
10.1.2最速下降算法
最速下降法的迭代公式是(10.1.6)其中是從出發(fā)的搜索方向,這里取在點處的最速下降方向,即
是從出發(fā)沿方向進行一維搜索的步長,即滿足(10.1.11)當(dāng)前第9頁\共有73頁\編于星期二\2點
計算步驟如下:1.給定初點,允許誤差,置.2.計算搜索方向3.若,則停止計算;否則,從出發(fā),沿進行一維搜索,求,使4.令,置,轉(zhuǎn)步2..
例10.1.1
用最速下降法解下列問題:當(dāng)前第10頁\共有73頁\編于星期二\2點解:第二次迭代:當(dāng)前第11頁\共有73頁\編于星期二\2點第三次迭代:當(dāng)前第12頁\共有73頁\編于星期二\2點當(dāng)前第13頁\共有73頁\編于星期二\2點在最速下降法的一位搜素中即在最速下降法中相鄰兩次搜索方向是正交的。當(dāng)前第14頁\共有73頁\編于星期二\2點對于二次嚴格凸函數(shù)其中A為n維對稱正定矩陣可以求出步長因子k(本章習(xí)題7)當(dāng)前第15頁\共有73頁\編于星期二\2點鋸齒現(xiàn)象
最速下降法的迭代點在向極小點靠近的過程中,走的是曲折的路線:后一次搜索方向d(k+1)與前一次搜索方向d(k)總是相互垂直的,稱它為鋸齒現(xiàn)象。這一點在前面的例題中已得到驗證。除極特殊的目標函數(shù)(如等值面為球面的函數(shù))和極特殊的初始點外,這種現(xiàn)象一般都要發(fā)生。最速下降法的收斂性當(dāng)前第16頁\共有73頁\編于星期二\2點
從直觀上可以看到,在遠離極小點的地方,每次迭代都有可能使目標函數(shù)值有較多的下降,但在接近極小點的地方,由于鋸齒現(xiàn)象,每次迭代行進的距離開始逐漸變小。因而收斂速度不快。
已有結(jié)論表明,最速下降法對于正定二次函數(shù)關(guān)于任意初始點都是收斂的(定理10.1.2),而且恰好是線性收斂的。當(dāng)前第17頁\共有73頁\編于星期二\2點當(dāng)前第18頁\共有73頁\編于星期二\2點當(dāng)前第19頁\共有73頁\編于星期二\2點§10.2牛頓法
6.2.1牛頓法
設(shè)是二次可微實函數(shù),.又設(shè)是的極小點的一個估計,我們把在展成Taylor級數(shù),并取二階近似:其中是在處的Hessian矩陣.為求的平穩(wěn)點,令即(10.2.1)當(dāng)前第20頁\共有73頁\編于星期二\2點設(shè)可逆,有(10.2.1)得到牛頓法的迭代公式(10.2.2)其中是Hessian矩陣的逆矩陣.這樣,知道后,算出在這一點處目標函數(shù)的梯度和Hessian矩陣的逆,代人(10.2.2),便得到后繼點,用代替,再用(10.2.2)計算,又得到的后繼點.依此類推,產(chǎn)生序列.在適當(dāng)?shù)臈l件下,這個序列收斂.
當(dāng)前第21頁\共有73頁\編于星期二\2點則牛頓法產(chǎn)生的序列收斂于.
實際上,當(dāng)牛頓法收斂時,有下列關(guān)系:其中C是某個常數(shù).因此,牛頓法至少2級收斂,參看文獻[19].可見牛頓法的收斂速率是很快的.當(dāng)前第22頁\共有73頁\編于星期二\2點例
用牛頓法解下列問題:
我們?nèi)〕觞c解:第2次迭代:當(dāng)前第23頁\共有73頁\編于星期二\2點第2次迭代:繼續(xù)迭代,得到最終收斂到最優(yōu)解x*=(1,0)T當(dāng)前第24頁\共有73頁\編于星期二\2點我們先用極值條件求解.令下面用牛頓法求解.任取初始點x(1)
,根據(jù)牛頓法的迭代公式:特別地,對于二次凸函數(shù),用牛頓法求解,經(jīng)1次迭代即達極小點.設(shè)有二次凸函數(shù)其中A是對稱正定矩陣。求迭代點x(2)
即1次迭代達到極小點.當(dāng)前第25頁\共有73頁\編于星期二\2點不一定是下降方向,經(jīng)迭代,目標函數(shù)值可能上升.此外,即使目標函數(shù)值下降,得到的點也不一定是沿牛頓方向的最好點或極小點.因此,人們對牛頓法進行修正,提出了阻尼牛頓法.
值得注意,當(dāng)初始點遠離極小點時,牛頓法可能不收斂.原因之一,牛頓方向
以后還會遇到一些算法,把它們用于二次凸函數(shù)時,類似于牛頓法,經(jīng)有限次迭代必達到極小點.這種性質(zhì)稱為二次終止性.對于二次凸函數(shù),用牛頓法求解,經(jīng)1次迭代即達極小點當(dāng)前第26頁\共有73頁\編于星期二\2點10.2.2阻尼牛頓法
阻尼牛頓法與原始牛頓法的區(qū)別在于增加了沿牛頓方向的一維搜索,其迭代公式是(6.2.6)其中為牛頓方向,是由一維搜索得到的步長,即滿足
阻尼牛頓法的計算步驟如下:1.給定初始點,允許誤差,置.2.計算當(dāng)前第27頁\共有73頁\編于星期二\2點3.若,則停止迭代;否則,令4.從出發(fā),沿方向作一維搜索:令.5.置,轉(zhuǎn)步2..
由于阻尼牛頓法含有一維搜索,因此每次迭代目標函數(shù)值一般有所下降(決不會上升).可以證明,阻尼牛頓法在適當(dāng)?shù)臈l件下具有全局收斂性,且為2級收斂.當(dāng)前第28頁\共有73頁\編于星期二\2點10.3、共軛梯度法當(dāng)前第29頁\共有73頁\編于星期二\2點10.3.1共軛方向法1.共軛方向和共軛方向法共軛是正交的推廣。當(dāng)前第30頁\共有73頁\編于星期二\2點幾何意義當(dāng)前第31頁\共有73頁\編于星期二\2點幾何意義當(dāng)前第32頁\共有73頁\編于星期二\2點當(dāng)前第33頁\共有73頁\編于星期二\2點當(dāng)前第34頁\共有73頁\編于星期二\2點當(dāng)前第35頁\共有73頁\編于星期二\2點當(dāng)前第36頁\共有73頁\編于星期二\2點當(dāng)前第37頁\共有73頁\編于星期二\2點推論:當(dāng)前第38頁\共有73頁\編于星期二\2點共軛方向法當(dāng)前第39頁\共有73頁\編于星期二\2點對于上述正交方向法,它是下降算法嗎?不難得到:故正交方向法,它是下降算法。當(dāng)前第40頁\共有73頁\編于星期二\2點可由一組線性無關(guān)向量組,類似于schmidt正交化過程,當(dāng)前第41頁\共有73頁\編于星期二\2點當(dāng)前第42頁\共有73頁\編于星期二\2點§10.3共軛梯度法
10.3.2共軛梯度法
共軛梯度法最初由Hesteness和Stiefel于1952年為求解線性方程組而提出.后來,人們把這種方法用于求解無約束最優(yōu)化問題,使之成為一種重要的最優(yōu)化方法.
下面,重點介紹Fletcher-Reeves共軛梯度法,簡稱FR法.
共軛梯度法的基本思想是把共軛性與最速下降方法相結(jié)合,利用已知點處的梯度構(gòu)造一組共軛方向,并沿這組方向進行搜索,求出目標函數(shù)的極小點.根據(jù)共軛方向的基本性質(zhì),這種方法具有二次終止性.
我們先討論對于二次凸函數(shù)的共軛梯度法,然后再把這種方法推廣到極小化一般函數(shù)的情形.當(dāng)前第43頁\共有73頁\編于星期二\2點.共軛梯度法
如何選取一組共軛方向?以下分析算法的具體步驟。我們先討論對于二次凸函數(shù)的共軛梯度法,然后再把這種方法推廣到極小化一般函數(shù)的情形當(dāng)前第44頁\共有73頁\編于星期二\2點初始搜索方向為最速下降方向當(dāng)前第45頁\共有73頁\編于星期二\2點當(dāng)前第46頁\共有73頁\編于星期二\2點當(dāng)前第47頁\共有73頁\編于星期二\2點當(dāng)前第48頁\共有73頁\編于星期二\2點常用兩個公式:著名的FR和PPR公式當(dāng)前第49頁\共有73頁\編于星期二\2點求解二次凸規(guī)劃的FR共軛梯度法求解二次凸規(guī)劃的FR共軛梯度法迭代多少次才可以達到最優(yōu)解?當(dāng)前第50頁\共有73頁\編于星期二\2點當(dāng)前第51頁\共有73頁\編于星期二\2點當(dāng)前第52頁\共有73頁\編于星期二\2點當(dāng)前第53頁\共有73頁\編于星期二\2點.用于一般函數(shù)的共軛梯度法當(dāng)前第54頁\共有73頁\編于星期二\2點.用于一般函數(shù)的共軛梯度法當(dāng)前第55頁\共有73頁\編于星期二\2點當(dāng)前第56頁\共有73頁\編于星期二\2點§10.3共軛梯度法
10.3.2共軛梯度法
共軛梯度法最初由Hesteness和Stiefel于1952年為求解線性方程組而提出.后來,人們把這種方法用于求解無約束最優(yōu)化問題,使之成為一種重要的最優(yōu)化方法.
下面,重點介紹Fletcher-Reeves共軛梯度法,簡稱FR法.
共軛梯度法的基本思想是把共軛性與最速下降方法相結(jié)合,利用已知點處的梯度構(gòu)造一組共軛方向,并沿這組方向進行搜索,求出目標函數(shù)的極小點.根據(jù)共軛方向的基本性質(zhì),這種方法具有二次終止性.
我們先討論對于二次凸函數(shù)的共軛梯度法,然后再把這種方法推廣到極小化一般函數(shù)的情形.
考慮問題當(dāng)前第57頁\共有73頁\編于星期二\2點其中,是對稱正定矩陣,是常數(shù).
具體求解方法如下:
首先,任意給定一個初始點,計算出目標函數(shù)在這點的梯度,若,則停止計算;否則,令(10.3.12)沿方向搜索,得到點.計算在處的梯度,若,則利用和構(gòu)造第2個搜索方向,再沿搜索.
一般地,若已知點和搜索方向,則從出發(fā),沿進行搜索,得到(10.3.14)當(dāng)前第58頁\共有73頁\編于星期二\2點其中步長滿足我們可以求出的顯式表達.令求的極小點,令(10.3.15)根據(jù)二次函數(shù)的梯度的表達式,(6.3.15)即(10.3.16)當(dāng)前第59頁\共有73頁\編于星期二\2點由(6.3.16)得到(10.3.17)
計算在處的梯度.若,則停止計算;否則,用共軛.按此設(shè)想,令(10.3.18)上式兩端左乘,并令由此得到(10.3.19)當(dāng)前第60頁\共有73頁\編于星期二\2點
再從出發(fā),沿方向搜索.綜上分析,在第1個搜索方向取負梯度的前提下,重復(fù)使用公式(10.3.14),(10.3.17),(10.3.18)和(10.3.19),就能伴隨計算點的增加,構(gòu)造出一組搜索方向.下面將要證明,這組方向是關(guān)于共軛的.因此,上述方法具有二次終止性.
定理10.3.3
對于正定二次函數(shù)(10.3.12),具有精確一維搜索的Fletcher-Reeves法在次一維搜索后即終止,并且對所有,下列關(guān)系成立:當(dāng)前第61頁\共有73頁\編于星期二\2點
例6.3.1
考慮下列問題:
取初始點和初始搜索方向分別為
在FR法中,初始搜索方向必須取最速下降方向,這一點絕不可忽視。
對于二次凸函數(shù),F(xiàn)R法的計算步驟如下:1.給定初始點,置.當(dāng)前第62頁\共有73頁\編于星期二\2點2.計算,若,則停止計算,得點;否則,進行下一步.3.構(gòu)造搜索方向,令其中,當(dāng)時,,當(dāng)時,按公式計算因子.4.令其中按公式(6.3.17)計算步長當(dāng)前第63頁\共有73頁\編于星期二\2點5.若,則停止計算,得點;否則,置,返回步2..
由當(dāng)前第64頁\共有73頁\編于星期二\2點§10.4擬牛頓法
6.4.1擬牛頓條件前面介紹了牛頓法,它的突出優(yōu)點是收斂很快.但是,運用牛頓法需要計算二階便導(dǎo)數(shù),而且目標函數(shù)的Hessian矩陣可能非正定.為了克服牛頓法的缺點,人們提出了擬牛頓法.它的基本思想是用不包含二階導(dǎo)數(shù)的矩陣近似牛頓法中的Hessian矩陣的逆矩陣.當(dāng)前第65頁\共有73頁\編于星期二\2點Newton法的優(yōu)缺點都很突出。
優(yōu)點:高收斂速度(二階收斂);
缺點:對初始點、目標函數(shù)要求高,計算量、存儲量大(需要計算、存儲Hesse矩陣及其逆)。
擬Newton法是模擬Newton法給出的一個保優(yōu)去劣的算法
擬Newton法是效果很好的一大類方法。它當(dāng)中的DFP算法和BFGS算法是直到目前為止在不用Hesse矩陣的方法中的最好方法。當(dāng)前第66頁\共有73頁\編于星期二\2點當(dāng)前第67頁\共有73頁\編于星期二\2點當(dāng)前第68頁\共有73頁\編于星期二\2點由于構(gòu)造近似矩陣的方法不同,因而出現(xiàn)不同的擬牛頓法.經(jīng)理論證明和實踐檢驗,擬牛頓法已經(jīng)成為一類公認的比較有效的算法下面分析怎樣構(gòu)造近似矩陣并用它取代牛頓法中的Hessian矩陣的逆.前面已經(jīng)給出牛頓法的迭代公式,即
k是從xk出發(fā)沿牛頓方向搜索的最優(yōu)步長.當(dāng)前第69頁\共有73頁\編于星期二\2點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人防工程制式銷售合同范本
- 分散采購服務(wù)合同范本
- 農(nóng)村燃氣安裝合同范例
- 協(xié)助寵物國際托運合同范本
- 農(nóng)田租賃合同范本
- 專利轉(zhuǎn)讓入股合同范本
- 養(yǎng)魚合作轉(zhuǎn)讓合同范本
- 公版采購合同范本
- 單位解聘教師合同范本
- 買賣中介公司合同范本
- 人教版小學(xué)數(shù)學(xué)一年級下冊教案
- 《住院患者身體約束的護理》團體標準解讀課件
- 新版人音版小學(xué)音樂一年級下冊全冊教案
- 2024年黑龍江建筑職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫全面
- MOOC 跨文化交際通識通論-揚州大學(xué) 中國大學(xué)慕課答案
- 常用液壓元件型號對照表230
- 項目章程模板范文
- 泰山產(chǎn)業(yè)領(lǐng)軍人才工程系統(tǒng)
- 輪扣架支模體系材料量計算
- 主題班會教案《讀書好讀好書好讀書》班會方案
- 食物鏈和食物網(wǎng)課件(共18張PPT)
評論
0/150
提交評論