版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高考數(shù)學(xué)必勝秘訣在哪?――概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié).txt師太,你是我心中的魔,貧僧離你越近,就離佛越遠(yuǎn)……初中的體育老師說:誰敢再穿裙子上我的課,就罰她倒立。高考數(shù)學(xué)必勝秘訣在哪?――概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié)八、圓錐曲線1.圓錐曲線的兩個(gè)定義:(1)第一定義中要重視"括號(hào)"內(nèi)的限制條件:橢圓中,與兩個(gè)定點(diǎn)F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時(shí),軌跡是線段FF,當(dāng)常數(shù)小于時(shí),無軌跡;雙曲線中,與兩定點(diǎn)F,F(xiàn)的距離的差的絕對(duì)值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的"絕對(duì)值"與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點(diǎn)的兩條射線,若﹥|FF|,則軌跡不存在。若去掉定義中的絕對(duì)值則軌跡僅表示雙曲線的一支。如(1)已知定點(diǎn),在滿足下列條件的平面上動(dòng)點(diǎn)P的軌跡中是橢圓的是A.B.C.D.(答:C);(2)方程表示的曲線是_____(答:雙曲線的左支)(2)第二定義中要注意定點(diǎn)和定直線是相應(yīng)的焦點(diǎn)和準(zhǔn)線,且"點(diǎn)點(diǎn)距為分子、點(diǎn)線距為分母",其商即是離心率。圓錐曲線的第二定義,給出了圓錐曲線上的點(diǎn)到焦點(diǎn)距離與此點(diǎn)到相應(yīng)準(zhǔn)線距離間的關(guān)系,要善于運(yùn)用第二定義對(duì)它們進(jìn)行相互轉(zhuǎn)化。如已知點(diǎn)及拋物線上一動(dòng)點(diǎn)P(x,y),則y+|PQ|的最小值是_____(答:2)2.圓錐曲線的標(biāo)準(zhǔn)方程(標(biāo)準(zhǔn)方程是指中心(頂點(diǎn))在原點(diǎn),坐標(biāo)軸為對(duì)稱軸時(shí)的標(biāo)準(zhǔn)位置的方程):(1)橢圓:焦點(diǎn)在軸上時(shí)()(參數(shù)方程,其中為參數(shù)),焦點(diǎn)在軸上時(shí)=1()。方程表示橢圓的充要條件是什么?(ABC≠0,且A,B,C同號(hào),A≠B)。如(1)已知方程表示橢圓,則的取值范圍為____(答:);(2)若,且,則的最大值是____,的最小值是___(答:)(2)雙曲線:焦點(diǎn)在軸上:=1,焦點(diǎn)在軸上:=1()。方程表示雙曲線的充要條件是什么?(ABC≠0,且A,B異號(hào))。如(1)雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),則該雙曲線的方程_______(答:);(2)設(shè)中心在坐標(biāo)原點(diǎn),焦點(diǎn)、在坐標(biāo)軸上,離心率的雙曲線C過點(diǎn),則C的方程為_______(答:)(3)拋物線:開口向右時(shí),開口向左時(shí),開口向上時(shí),開口向下時(shí)。3.圓錐曲線焦點(diǎn)位置的判斷(首先化成標(biāo)準(zhǔn)方程,然后再判斷):(1)橢圓:由,分母的大小決定,焦點(diǎn)在分母大的坐標(biāo)軸上。如已知方程表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍是__(答:)(2)雙曲線:由,項(xiàng)系數(shù)的正負(fù)決定,焦點(diǎn)在系數(shù)為正的坐標(biāo)軸上;(3)拋物線:焦點(diǎn)在一次項(xiàng)的坐標(biāo)軸上,一次項(xiàng)的符號(hào)決定開口方向。特別提醒:(1)在求解橢圓、雙曲線問題時(shí),首先要判斷焦點(diǎn)位置,焦點(diǎn)F,F(xiàn)的位置,是橢圓、雙曲線的定位條件,它決定橢圓、雙曲線標(biāo)準(zhǔn)方程的類型,而方程中的兩個(gè)參數(shù),確定橢圓、雙曲線的形狀和大小,是橢圓、雙曲線的定形條件;在求解拋物線問題時(shí),首先要判斷開口方向;(2)在橢圓中,最大,,在雙曲線中,最大,。4.圓錐曲線的幾何性質(zhì):(1)橢圓(以()為例):①范圍:;②焦點(diǎn):兩個(gè)焦點(diǎn);③對(duì)稱性:兩條對(duì)稱軸,一個(gè)對(duì)稱中心(0,0),四個(gè)頂點(diǎn),其中長(zhǎng)軸長(zhǎng)為2,短軸長(zhǎng)為2;④準(zhǔn)線:兩條準(zhǔn)線;⑤離心率:,橢圓,越小,橢圓越圓;越大,橢圓越扁。如(1)若橢圓的離心率,則的值是__(答:3或);(2)以橢圓上一點(diǎn)和橢圓兩焦點(diǎn)為頂點(diǎn)的三角形的面積最大值為1時(shí),則橢圓長(zhǎng)軸的最小值為__(答:)(2)雙曲線(以()為例):①范圍:或;②焦點(diǎn):兩個(gè)焦點(diǎn);③對(duì)稱性:兩條對(duì)稱軸,一個(gè)對(duì)稱中心(0,0),兩個(gè)頂點(diǎn),其中實(shí)軸長(zhǎng)為2,虛軸長(zhǎng)為2,特別地,當(dāng)實(shí)軸和虛軸的長(zhǎng)(2)求軌跡方程的常用方法:①直接法:直接利用條件建立之間的關(guān)系;如已知?jiǎng)狱c(diǎn)P到定點(diǎn)F(1,0)和直線的距離之和等于4,求P的軌跡方程.(答:或);②待定系數(shù)法:已知所求曲線的類型,求曲線方程――先根據(jù)條件設(shè)出所求曲線的方程,再由條件確定其待定系數(shù)。如線段AB過x軸正半軸上一點(diǎn)M(m,0),端點(diǎn)A、B到x軸距離之積為2m,以x軸為對(duì)稱軸,過A、O、B三點(diǎn)作拋物線,則此拋物線方程為 (答:);③定義法:先根據(jù)條件得出動(dòng)點(diǎn)的軌跡是某種已知曲線,再由曲線的定義直接寫出動(dòng)點(diǎn)的軌跡方程;如(1)由動(dòng)點(diǎn)P向圓作兩條切線PA、PB,切點(diǎn)分別為A、B,∠APB=600,則動(dòng)點(diǎn)P的軌跡方程為 (答:);(2)點(diǎn)M與點(diǎn)F(4,0)的距離比它到直線的距離小于1,則點(diǎn)M的軌跡方程是_______(答:);(3)一動(dòng)圓與兩圓⊙M:和⊙N:都外切,則動(dòng)圓圓心的軌跡為 (答:雙曲線的一支);④代入轉(zhuǎn)移法:動(dòng)點(diǎn)依賴于另一動(dòng)點(diǎn)的變化而變化,并且又在某已知曲線上,則可先用的代數(shù)式表示,再將代入已知曲線得要求的軌跡方程;如動(dòng)點(diǎn)P是拋物線上任一點(diǎn),定點(diǎn)為,點(diǎn)M分所成的比為2,則M的軌跡方程為__________(答:);⑤參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)之間的關(guān)系不易直接找到,也沒有相關(guān)動(dòng)點(diǎn)可用時(shí),可考慮將均用一中間變量(參數(shù))表示,得參數(shù)方程,再消去參數(shù)得普通方程)。如(1)AB是圓O的直徑,且|AB|=2a,M為圓上一動(dòng)點(diǎn),作MN⊥AB,垂足為N,在OM上取點(diǎn),使,求點(diǎn)的軌跡。(答:);(2)若點(diǎn)在圓上運(yùn)動(dòng),則點(diǎn)的軌跡方程是____(答:);(3)過拋物線的焦點(diǎn)F作直線交拋物線于A、B兩點(diǎn),則弦AB的中點(diǎn)M的軌跡方程是________(答:);注意:①如果問題中涉及到平面向量知識(shí),那么應(yīng)從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行"摘帽子或脫靴子"轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行"摘帽子或脫靴子"轉(zhuǎn)化。如已知橢圓的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),Q是橢圓外的動(dòng)點(diǎn),滿足點(diǎn)P是線段F1Q與該橢圓的交點(diǎn),點(diǎn)T在線段F2Q上,并且滿足(1)設(shè)為點(diǎn)P的橫坐標(biāo),證明;(2)求點(diǎn)T的軌跡C的方程;(3)試問:在點(diǎn)T的軌跡C上,是否存在點(diǎn)M,使△F1MF2的面積S=若存在,求∠F1MF2的正切值;若不存在,請(qǐng)說明理由.(答:(1)略;(2);(3)當(dāng)時(shí)不存在;當(dāng)時(shí)存在,此時(shí)∠F1MF2=2)②曲線與曲線方程、軌跡與軌跡方程是兩個(gè)不同的概念,尋求軌跡或軌跡方程時(shí)應(yīng)注意軌跡上特殊點(diǎn)對(duì)軌跡的"完備性與純粹性"的影響.③在與圓錐曲線相關(guān)的綜合題中,常借助于"平面幾何性質(zhì)"數(shù)形結(jié)合(如角平分線的雙重身份――對(duì)稱性、利用到角公式)、"方程與函數(shù)性質(zhì)"化解析幾何問題為代數(shù)問題、"分類討論思想"化整為零分化處理、"求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系"等等.④如果在一條直線上出現(xiàn)"三個(gè)或三個(gè)以上的點(diǎn)",那么可選擇應(yīng)用"斜率或向量"為橋梁轉(zhuǎn)化.14、解析幾何與向量綜合時(shí)可能出現(xiàn)的向量?jī)?nèi)容:(1)給出直線的方向向量或;(2)給出與相交,等于已知過的中點(diǎn);(3)給出,等于已知是的中點(diǎn);(4)給出,等于已知與的中點(diǎn)三點(diǎn)共線;(5)給出以下情形之一:①;②存在實(shí)數(shù);③若存在實(shí)數(shù),等于已知三點(diǎn)共線.(6)給出,等于已知是的定比分點(diǎn),為定比,即(7)給出,等于已知,即是直角,給出,等于已知是鈍角,給出,等于已知是銳角,(8)給出,等于已知是的平分線/(9)在平行四邊形中,給出,等于已知是菱形;(10)在平行四邊形中,給出,等于已知是矩形;(11)在中,給出,等于已知是的外心(三角形外接圓的圓心,三角形的外心是三角形三邊垂直平分線的交點(diǎn));(12)在中,給出,等于已知是的重心(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 13《橋》說課稿-2024-2025學(xué)年六年級(jí)上冊(cè)語文統(tǒng)編版
- 增材制造與創(chuàng)新設(shè)計(jì):從概念到產(chǎn)品 課件 第6、7章 3D打印產(chǎn)品創(chuàng)新結(jié)構(gòu)設(shè)計(jì)、增材制造創(chuàng)新綜合應(yīng)用實(shí)例
- 2024技術(shù)開發(fā)合同約定的技術(shù)成果交付和保密
- 農(nóng)科創(chuàng)新之路
- 科技引領(lǐng)電商新紀(jì)元
- 12 故宮博物院(說課稿)-2024-2025學(xué)年統(tǒng)編版語文六年級(jí)上冊(cè)
- 基于信任關(guān)系產(chǎn)生的租賃合同范本(2篇)
- 專項(xiàng)活動(dòng)策劃委托:2024年合作合同版B版
- 2024年版混磚結(jié)構(gòu)煙囪拆除操作合同版B版
- 10-1《勸學(xué)》說課稿 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊(cè)
- (自考)經(jīng)濟(jì)學(xué)原理中級(jí)(政經(jīng))課件 第二章 商品和貨幣
- ×××老舊小區(qū)改造工程施工組織設(shè)計(jì)(全面)
- 建筑展望與未來發(fā)展趨勢(shì)
- “互聯(lián)網(wǎng)+”大學(xué)生創(chuàng)新創(chuàng)業(yè)大賽計(jì)劃書一等獎(jiǎng)
- 水土保持方案投標(biāo)文件技術(shù)部分
- GB/T 3324-2024木家具通用技術(shù)條件
- 專題3-6 雙曲線的離心率與常用二級(jí)結(jié)論【12類題型】(原卷版)-A4
- 2024年人力資源年度工作總結(jié)參考(2篇)
- DB52T 1776.1-2023 耕地質(zhì)量等別評(píng)價(jià) 第1部分:評(píng)價(jià)規(guī)范
- BIM工程師年終總結(jié)
- 釘釘OA辦公系統(tǒng)操作流程培訓(xùn)
評(píng)論
0/150
提交評(píng)論