




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
仁壽一中南校區(qū)高2021級(jí)高二(上)期末考試
理科數(shù)學(xué)試題
本試卷分為第I卷(選擇題)和第II卷(非選擇題)兩部分,共150分,考試時(shí)間
120分鐘.
注意事項(xiàng):
1.答題前,務(wù)必將自己的姓名、考號(hào)填寫在答題卡規(guī)定的位置上.
2.答選擇題時(shí),必須使用2B鉛筆將答題卡上對(duì)應(yīng)題號(hào)的答案標(biāo)號(hào)涂黑,如需改動(dòng),用
橡皮擦干
凈后,再選涂其它答案標(biāo)號(hào)
3.答非選擇題時(shí),必須使用0.5毫米黑色簽字筆將答案書(shū)寫在答題卡規(guī)定的位置上.
4.考試結(jié)束后,將答題卡交回.
第I卷(選擇題,共60分)
一、選擇題:本題共12小題,每小題5分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目
要求的。
1、命題"玉eR,x,-V+1>0”的否定是()
A.3xeR,x3-x2+l<0B.VxeR,x3-x2+1<0C.3xeR,x3-x2+1<0
D.VxeR,x3-x2+1>0
【答案】B
2、在空間直角坐標(biāo)系O^z中,點(diǎn)(2,7,1)在xOy平面上的射影到坐標(biāo)原點(diǎn)。的距離為()
A.5^2B.^3C.y/sD.-^6
【答案】C
3、已知圓C:(x-l)、y2=1與拋物線f=2py(p>0)的準(zhǔn)線相切,則〃=()
11
A.—B.—C.8D.2
84
【答案】D
4、設(shè)"?,”是兩條不同的直線,a,4是兩個(gè)不同的平面,下列命題正確的是()
A.若a£=,〃,〃ua,〃_Lm,則〃_L/?.B.若加工。,加〃〃,"u",則aJ■6.
C.若〃〃/a,n/la,則D,若々〃/?,相ua,nu(J,則mHn.
【答案】B
5、已知2:卜-3|<1,<7:/+》-6>0,則。是4的
A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件
【答案】C
6、已知圓C的圓心在直線x+y=O上,且圓C與y軸的交點(diǎn)分別為A(0,4),3(0,-2),則圓C
的標(biāo)準(zhǔn)方程為()
A.(x-l)2+(y+l)2=10B.(x+l)2+(y-l)2=10
C.(x-1)2+(y+1)2=VlOD.(x+l)2+(y-l)2=710
【答案】B
7、某四面體的三視圖如圖所示,該四面體的表面積為()
;二
h—1―Hh—1―d
正(主)視圖側(cè)(左)視圖
廠
俯視圖
A.3+且B.3+J
5C.—i-V3D.3+
222
【答案】A
8、執(zhí)行如圖所示的程序框圖,輸出S的值為()
'開(kāi)始)
1=1,5=0
____1
S=S+i(i+l)i=i+l
/輸[s/
(結(jié)束
A.112B.70C.40D.20
【答案】B
9、如圖,在三棱錐S-A8C中,SA=SC=AC=2x/2,AB=BC=2,二面角S-AC—8的正
切值是正,則三棱錐S-A8C外接球的表面積是()
4B
4n
A.12兀B.4〃C.4百萬(wàn)D.—
3
【答案】A
22
10、已知雙曲線「-當(dāng)=1(a>0,b>0)的左,右焦點(diǎn)分別為",F(xiàn)2.若雙曲線右支上
a'b~
存在點(diǎn)尸,使得「耳與雙曲線的一條漸近線垂直并相交于點(diǎn)。,且尸工,尸。,則雙曲線的
漸近線方程為()
A.y=±xB.y=±2xC.y=±y/3xD.y=±>Jlx
【答案】B
22
11、已知橢圓C:二+2=l(a>〃>0),P是橢圓C上的點(diǎn),6(—c,0),6(c,0)是橢圓c的
ab
左右焦點(diǎn),若尸耳?尸石4"恒成立,則橢圓C的離心率e的取值范圍是()
A.B.(0,V2-1]C.D.[72-1,1)
【答案】A
12、如圖,已知正方體ABCD-A與G。的棱長(zhǎng)為1,點(diǎn)M為棱AB的中點(diǎn),點(diǎn)P在側(cè)面BCQB,
及其邊界上運(yùn)動(dòng),下列命題:①當(dāng)GP=gq3時(shí),異面直線C尸與AO所成角的正切值為2;
②當(dāng)點(diǎn)P到平面A8CO的距離等于到直線A片的距離時(shí);點(diǎn)尸的軌跡為拋物線的一部分;
③存在點(diǎn)P滿足+石;④滿足的點(diǎn)P的軌跡長(zhǎng)度為玄;其中真命
4
題的個(gè)數(shù)為()
A.1B.2C.3D.4
aG
C
AEMB
【答案】D
對(duì)于①,如圖,CP與AO所成的角即CP與BC所成的角,因?yàn)镃£=!GB,所以82=述,
33
BC=1,NPBC二,由余弦定理,CP=好,由正弦定理,sinZBCP=gPsinZPBC=,
43CP5
所以tanNBCP=2,即CP與AO所成的角的正切值為2,①正確;
對(duì)于②,點(diǎn)P到平面ABC。的距離即點(diǎn)尸到直線8c的距離,點(diǎn)P到直線A4的距離即點(diǎn)P
到用的距離,依據(jù)拋物線的定義當(dāng)兩距離相等時(shí)點(diǎn)P的軌跡為拋物線一部分,②正確;
對(duì)于③選項(xiàng)‘假設(shè)尸叫明哆
點(diǎn)P到M距離可以轉(zhuǎn)化成
PM=NBM?+MP?=,12+(-)2,
正好點(diǎn)8M=3,且BM始終垂直平面BCGB-所以只需要讓8P=1即可,點(diǎn)尸軌跡是以8
為圓心,
長(zhǎng)度為1的圓上,同理P。產(chǎn)",RG=i,只需要讓即可,點(diǎn)p軌跡是以C/為圓
22
心,長(zhǎng)度
為3的圓上,如圖1.
又因?yàn)?-t<BG=0<1+工,所以兩個(gè)圓相交有交點(diǎn),即存在點(diǎn)P滿足尸M=PR=@,
選項(xiàng)③正確:
對(duì)于④選項(xiàng),過(guò)M點(diǎn)作A/G〃AF交BC于點(diǎn)G,過(guò)M點(diǎn)作AE〃例”交8用于“,則
BG=HG=-,
4
因?yàn)?。M1AF,所以MG_LRM,同理MH1RM,MHcMG=M,
1M1平面MHG,平面MHGc平面BCC4=HG,所以點(diǎn)p的軌跡為
"G=j(;)2+(:)2=號(hào),
所以選項(xiàng)④正確.
圖2
第n卷
二、填空題:本大題共4小題,每小題5分.
13、已知雙曲線C-.y2--=\,則該雙曲線的實(shí)軸長(zhǎng)為_(kāi)___________
2
【答案】2
14、設(shè)P,。分別為直線x-y=O和圓/+(>-6)2=2上的動(dòng)點(diǎn),則|PQ|的最小值為
【答案】20
15、在菱形A8c。中,NBAQ=60,將沿8D折疊,使平面A8D_L平面BCD,則A。
與平面ABC所成角的正弦值為
【答案】巫
5
16、過(guò)”(1,0)的直線/與拋物線E:y2=x交于A(x,,y),3(芻,%)兩點(diǎn),且與E的準(zhǔn)線交
于點(diǎn)C,點(diǎn)F是E的焦點(diǎn),若△ACF的面積是△8CF的面積的3倍,則玉+%=
【答案】-
2
三、解答題:解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.
17、如圖,在四棱錐尸—ABCD中,PCJ■底面A8C2A8CD是直角梯形,ADYDC,AB//DC,
AB=2AD=2CD=2,點(diǎn)E在線段PB上且PE.
2
(1)證明:PD//平面AEC;
(2)證明:BC_L平面PAC.
【詳解】(1)證明:連接BO交AC于點(diǎn)。,連接。氏丫48//DC,
AB=2CD,.-.DOC…BOA,B[J—
OBAB2
又丫PE=-EB,—=—=-PDHOE又:OEu面A£C、
2OBEB2
PDcz面AECJ.PD//面AEC
p
E
>
DC
(2)???PC_L平面A8C£),8Cu平面ABC。,PCLBC,又
VAB=2,AD=CD=VADLDC,且438是直角梯形,,AC=BC=&,即
AC2+BC2=AB2,ACIBC,又,;PCcAC=C,且PC,ACu平面PAC,,BCJ■平
面PAC.
18、圓O:/+y2=4內(nèi)有一點(diǎn)4(],]),過(guò)片的直線交圓于A、B兩點(diǎn).
⑴當(dāng)弦A8被幾平分時(shí),求直線AB的方程;
⑵若圓。與圓C:(x+l)2+(y+l)2=10相交于E,F兩點(diǎn),求|EF|.
【答案】(1)y-1=-(x-1)即x+y-2=0(2)2^/2
19、已知。為坐標(biāo)原點(diǎn),。(北2)位于拋物線C:V=2px(p>0)上,且到拋物線的準(zhǔn)線的
距離為2.
⑴求拋物線C的方程;
(2)已知點(diǎn)A(-2,4),過(guò)拋物線焦點(diǎn)的直線/交C于M,N兩點(diǎn),求的最小值以及此
時(shí)直線/的方程.
【答案】⑴根據(jù)題意可得〃?+52,又聽(tīng)=2pm,解得力=1,p=2,故所求拋物線C
方程丁=4x,
(2)設(shè)點(diǎn)Ngyj,拋物線4x的焦點(diǎn)坐標(biāo)為(1,0).當(dāng)直線/的斜率等于
。時(shí),不符合題意;
當(dāng)直線’的斜率不等于。時(shí)’設(shè)過(guò)拋物線焦點(diǎn)的直線,的方程為:由1;y2==)+4x],
消去x得:y2-4ty-4=0,
A=16r+16>0,得feR,由韋達(dá)定理得y+%=小,=-4>
因?yàn)锳N=a+2)(w+2)+(%-4)(必一4)=不當(dāng)+2(%+巧)+4+凹%—4(乂+%)+16
22才+靈]+
=A.A+24+弘必-4(,+%)+16
4444)
=^^-+g[(y+%)2-2%%]+4+%%-4(%+y2)+16
=l+1[(4r)2+8]+4-4-16f+16-8r-16r+21=8(r-l)2+13.所以當(dāng),=1時(shí),AM4N取
得最小值為13.
此時(shí)直線/的方程為x-y7=0.
20、如圖在四棱錐P-ABCD中,尸A,底面ABCO,且底面ABCO是平行四邊形.已知
PA=AB=2,4£)=右,AC=1,E是中點(diǎn).
⑴求證:平面P3C,平面ACE;
⑵求平面PAD與平面ACE所成銳二面角的余弦值.
【答案】(1)P4_L面A8CO,且PA=2,4C=1,;.pc=^=BC.:E是心中點(diǎn),所以
尸3J_CE.同理可證:PBLAE.
又Afu面ACE,CEu面ACE,AE1CE=.?.尸3J_平面ACE.;PBu面PBC,...平
面P8CJ,平面ACE.
(2)BC2=AB2+AC2,??AB2AC.以A為原點(diǎn),4。,48,45分別為達(dá)》2軸正方向
建系,如圖:則4(0,0,0),8(0,2,0),。(1,一2,0),尸(0,0,2),£(0,1,1).設(shè)平面凡4。的法向量
〃=(x,y,z),則“A?!?,得1.2.v=0,不妨取丫=1,貝"=(2/'°).由(°得PB=(°2—2)
n-PB
是平面ACE的一個(gè)法向量,所以cosPAO
\n\x\PB\~45-242~10,所以平面與
平面ACE所成銳二面角的余弦值為叵
10
2
方=1(〃>10),長(zhǎng)軸是短軸的2倍,點(diǎn)網(wǎng)2,6)在橢圓C上,且點(diǎn)尸
在x軸上的投影為點(diǎn)2.
⑴求橢圓C的方程;
⑵設(shè)過(guò)點(diǎn)Q的且不與X軸垂直的直線/交橢圓于A、B兩點(diǎn),是否存點(diǎn)M&o),使得直線MA,
直線MB與x軸所在直線所成夾角相等?若存在,請(qǐng)求出常數(shù)f的值;若不存在,請(qǐng)說(shuō)明理由.
29
【答案】(1)解:依題意2a=2x&,即所以橢圓C即二+與=1,又橢圓過(guò)點(diǎn)
4從h2
P(2市),
所以行+尸1,解得從=4,所以『=16,所以橢圓方程為標(biāo)+寧=1;
(2)解:因?yàn)橹本€/不與x軸垂直,所以設(shè)直線/為丁=耳》-2),A(HM),3(七,以),
三+2_=1
由1164,消去y整理得(4%2+1卜2_]6%\+16公-16=0,
y=k^x-2)
△=(一16左2)2-4(16%2-16)(422+1)=342+1〉0,
所以玉+%=*丁中2=叱:二6,因?yàn)槠呷?38=0,所以+產(chǎn)7=0,所以
2
?4k+\4k2+1X|Tx2-t
"二2)+),_:)=(),即(王一2)(馬一。+(赴一2)(辦一。=0,即
2X1%2_(2+/)(x+/)+4/=0,
+4r=0,解得t=8.
4公+1''正+1
22、橢圓E:5+/=1(4>匕>0)的離心率是當(dāng),點(diǎn)M(夜,1)是橢圓E上一點(diǎn),過(guò)點(diǎn)以0,1)
的動(dòng)直線/與橢圓相交于A,8兩點(diǎn).
⑴求橢圓E的方程;
⑵求A40B面積的最大值;
⑶在平面直角坐標(biāo)系X。),中,是否存在與點(diǎn)尸不同的定點(diǎn)Q,使不7=言恒成立?存在,
QbrD
求出點(diǎn)。的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
£=也
a2“2=4,、
解得〃=2,橢圓C的方程為三+亡=1.
【詳解】(1)根據(jù)題意,得/=/+/
2042
211c=2
r+k=1
[a~h~
y=kx+l
(2)依題意,設(shè)A(x”x),3(王,丁2),設(shè)直線/為y=Ax+l,聯(lián)立.22.消去y,
—+^-=1
42
得(1+2^b2+4履-2=0,4k2
△>0恒成立,占+&=_目"/=_,
故
a.J1+4公
=疝-引f&…)”中一急)-1+2k2—-
令r=7T工記,tWl,所以5"“=夜?而!&即近,當(dāng)且僅當(dāng),=1,即%=0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 借用鐵路用地合同范本
- 2025年淮安b2考貨運(yùn)資格證要多久
- 別墅電梯銷售合同范本
- 上海退休人員返聘合同范本
- 買賣產(chǎn)品合作合同范本
- 轉(zhuǎn)化單位規(guī)則
- 加盟產(chǎn)品經(jīng)銷合同范本
- 化肥試驗(yàn)合同范本
- 北京合伙創(chuàng)業(yè)合同范本
- 個(gè)人合作股合同范本
- 2025年供應(yīng)鏈管理公司合作項(xiàng)目協(xié)議書(shū)
- 2025年度度假村景觀設(shè)計(jì)及施工一體化合同
- 2025年山東化工職業(yè)學(xué)院高職單招職業(yè)技能測(cè)試近5年常考版參考題庫(kù)含答案解析
- 《如何規(guī)劃養(yǎng)禽場(chǎng)》課件
- 2024-2025學(xué)年云南省昆明市盤龍區(qū)三年級(jí)(上)期末數(shù)學(xué)試卷(含答案)
- 物業(yè)公司行政人事部職責(zé)
- 醫(yī)療健康行業(yè)保密免責(zé)協(xié)議書(shū)
- 《設(shè)計(jì)思維與方法》課件
- 第一課走進(jìn)人工智能 說(shuō)課稿 2023-2024學(xué)年浙教版(2023)初中信息技術(shù)八年級(jí)下冊(cè)
- 健身行業(yè)會(huì)員權(quán)益保障及免責(zé)條款協(xié)議
- 體檢中心前臺(tái)接待流程
評(píng)論
0/150
提交評(píng)論